186 research outputs found

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Membrane systems with limited parallelism

    Get PDF
    Membrane computing is an emerging research field that belongs to the more general area of molecular computing, which deals with computational models inspired from bio-molecular processes. Membrane computing aims at defining models, called membrane systems or P systems, which abstract the functioning and structure of the cell. A membrane system consists of a hierarchical arrangement of membranes delimiting regions, which represent various compartments of a cell, and with each region containing bio-chemical elements of various types and having associated evolution rules, which represent bio-chemical processes taking place inside the cell. This work is a continuation of the investigations aiming to bridge membrane computing (where in a compartmental cell-like structure the chemicals to evolve are placed in compartments defined by membranes) and brane calculi (where one considers again a compartmental cell-like structure with the chemicals/proteins placed on the membranes themselves). We use objects both in compartments and on membranes (the latter are called proteins), with the objects from membranes evolving under the control of the proteins. Several possibilities are considered (objects only moved across membranes or also changed during this operation, with the proteins only assisting the move/change or also changing themselves). Somewhat expected, computational universality is obtained for several combinations of such possibilities. We also present a method for solving the NP-complete SAT problem using P systems with proteins on membranes. The SAT problem is solved in O(nm) time, where n is the number of boolean variables and m is the number of clauses for an instance written in conjunctive normal form. Thus, we can say that the solution for each given instance is obtained in linear time. We succeeded in solving SAT by a uniform construction of a deterministic P system which uses rules involving objects in regions, proteins on membranes, and membrane division. Then, we investigate the computational power of P systems with proteins on membranes in some particular cases: when only one protein is placed on a membrane, when the systems have a minimal number of rules, when the computation evolves in accepting or computing mode, etc. This dissertation introduces also another new variant of membrane systems that uses context-free rewriting rules for the evolution of objects placed inside compartments of a cell, and symport rules for communication between membranes. The strings circulate across membranes depending on their membership to regular languages given by means of regular expressions. We prove that these rewriting-symport P systems generate all recursively enumerable languages. We investigate the computational power of these newly introduced P systems for three particular forms of the regular expressions that are used by the symport rules. A characterization of ET0L languages is obtained in this context

    Mathematics & Statistics 2017 APR Self-Study & Documents

    Get PDF
    UNM Mathematics & Statistics APR self-study report, review team report, response report, and initial action plan for Spring 2017, fulfilling requirements of the Higher Learning Commission

    MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics

    Full text link
    El libro de actas recoge las aportaciones de los autores a través de los correspondientes artículos a la Dinámica de Sistemas Multicuerpo y la Mecatrónica (Musme). Estas disciplinas se han convertido en una importante herramienta para diseñar máquinas, analizar prototipos virtuales y realizar análisis CAD sobre complejos sistemas mecánicos articulados multicuerpo. La dinámica de sistemas multicuerpo comprende un gran número de aspectos que incluyen la mecánica, dinámica estructural, matemáticas aplicadas, métodos de control, ciencia de los ordenadores y mecatrónica. Los artículos recogidos en el libro de actas están relacionados con alguno de los siguientes tópicos del congreso: Análisis y síntesis de mecanismos ; Diseño de algoritmos para sistemas mecatrónicos ; Procedimientos de simulación y resultados ; Prototipos y rendimiento ; Robots y micromáquinas ; Validaciones experimentales ; Teoría de simulación mecatrónica ; Sistemas mecatrónicos ; Control de sistemas mecatrónicosUniversitat Politècnica de València (2011). MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/13224Archivo delegad

    Optimization Methods Applied to Power Systems Ⅱ

    Get PDF
    Electrical power systems are complex networks that include a set of electrical components that allow distributing the electricity generated in the conventional and renewable power plants to distribution systems so it can be received by final consumers (businesses and homes). In practice, power system management requires solving different design, operation, and control problems. Bearing in mind that computers are used to solve these complex optimization problems, this book includes some recent contributions to this field that cover a large variety of problems. More specifically, the book includes contributions about topics such as controllers for the frequency response of microgrids, post-contingency overflow analysis, line overloads after line and generation contingences, power quality disturbances, earthing system touch voltages, security-constrained optimal power flow, voltage regulation planning, intermittent generation in power systems, location of partial discharge source in gas-insulated switchgear, electric vehicle charging stations, optimal power flow with photovoltaic generation, hydroelectric plant location selection, cold-thermal-electric integrated energy systems, high-efficiency resonant devices for microwave power generation, security-constrained unit commitment, and economic dispatch problems

    Annual report / IFW, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

    Get PDF
    corecore