143 research outputs found

    Distributed algorithms for nonlinear tree-sparse problems

    Get PDF
    [no abstract

    Dual methods and approximation concepts in structural synthesis

    Get PDF
    Approximation concepts and dual method algorithms are combined to create a method for minimum weight design of structural systems. Approximation concepts convert the basic mathematical programming statement of the structural synthesis problem into a sequence of explicit primal problems of separable form. These problems are solved by constructing explicit dual functions, which are maximized subject to nonnegativity constraints on the dual variables. It is shown that the joining together of approximation concepts and dual methods can be viewed as a generalized optimality criteria approach. The dual method is successfully extended to deal with pure discrete and mixed continuous-discrete design variable problems. The power of the method presented is illustrated with numerical results for example problems, including a metallic swept wing and a thin delta wing with fiber composite skins

    Entropy and optimization.

    Get PDF

    Supervised Classification and Mathematical Optimization

    Get PDF
    Data Mining techniques often ask for the resolution of optimization problems. Supervised Classification, and, in particular, Support Vector Machines, can be seen as a paradigmatic instance. In this paper, some links between Mathematical Optimization methods and Supervised Classification are emphasized. It is shown that many different areas of Mathematical Optimization play a central role in off-the-shelf Supervised Classification methods. Moreover, Mathematical Optimization turns out to be extremely useful to address important issues in Classification, such as identifying relevant variables, improving the interpretability of classifiers or dealing with vagueness/noise in the data

    (Global) Optimization: Historical notes and recent developments

    Get PDF
    Recent developments in (Global) Optimization are surveyed in this paper. We collected and commented quite a large number of recent references which, in our opinion, well represent the vivacity, deepness, and width of scope of current computational approaches and theoretical results about nonconvex optimization problems. Before the presentation of the recent developments, which are subdivided into two parts related to heuristic and exact approaches, respectively, we briefly sketch the origin of the discipline and observe what, from the initial attempts, survived, what was not considered at all as well as a few approaches which have been recently rediscovered, mostly in connection with machine learning

    Supervised classification and mathematical optimization

    Get PDF
    Data Mining techniques often ask for the resolution of optimization problems. Supervised Classification, and, in particular, Support Vector Machines, can be seen as a paradigmatic instance. In this paper, some links between Mathematical Optimization methods and Supervised Classification are emphasized. It is shown that many different areas of Mathematical Optimization play a central role in off-the-shelf Supervised Classification methods. Moreover, Mathematical Optimization turns out to be extremely useful to address important issues in Classification, such as identifying relevant variables, improving the interpretability of classifiers or dealing with vagueness/noise in the data.Ministerio de Ciencia e InnovaciónJunta de Andalucí

    Calculation of chemical and phase equilibria

    Get PDF
    Bibliography: pages 167-169.The computation of chemical and phase equilibria is an essential aspect of chemical engineering design and development. Important applications range from flash calculations to distillation and pyrometallurgy. Despite the firm theoretical foundations on which the theory of chemical equilibrium is based there are two major difficulties that prevent the equilibrium state from being accurately determined. The first of these hindrances is the inaccuracy or total absence of pertinent thermodynamic data. The second is the complexity of the required calculation. It is the latter consideration which is the sole concern of this dissertation

    Robust Stability and Optimality Conditions for Parametric Infinite and Semi-Infinite Programs

    Get PDF
    This paper primarily concerns the study of parametric problems of infinite and semi-infinite programming, where functional constraints are given by systems of infinitely many linear inequalities indexed by an arbitrary set T, where decision variables run over Banach (infinite programming) or finite-dimensional (semi-infinite case) spaces, and where objectives are generally described by nonsmooth and nonconvex cost functions. The parameter space of admissible perturbations in such problems is formed by all bounded functions on T equipped with the standard supremum norm. Unless the index set T is finite, this space is intrinsically infinite-dimensional (nonreflexive and nonseparable) of the l(infinity)-type. By using advanced tools of variational analysis and generalized differentiation and largely exploiting underlying specific features of linear infinite constraints, we establish complete characterizations of robust Lipschitzian stability (with computing the exact bound of Lipschitzian moduli) for parametric maps of feasible solutions governed by linear infinite inequality systems and then derive verifiable necessary optimality conditions for the infinite and semi-infinite programs under consideration expressed in terms of their initial data. A crucial part of our analysis addresses the precise computation of coderivatives and their norms for infinite systems of parametric linear inequalities in general Banach spaces of decision variables. The results obtained are new in both frameworks of infinite and semi-infinite programming
    • …
    corecore