78 research outputs found

    A Deep Learning Framework for Unsupervised Affine and Deformable Image Registration

    Full text link
    Image registration, the process of aligning two or more images, is the core technique of many (semi-)automatic medical image analysis tasks. Recent studies have shown that deep learning methods, notably convolutional neural networks (ConvNets), can be used for image registration. Thus far training of ConvNets for registration was supervised using predefined example registrations. However, obtaining example registrations is not trivial. To circumvent the need for predefined examples, and thereby to increase convenience of training ConvNets for image registration, we propose the Deep Learning Image Registration (DLIR) framework for \textit{unsupervised} affine and deformable image registration. In the DLIR framework ConvNets are trained for image registration by exploiting image similarity analogous to conventional intensity-based image registration. After a ConvNet has been trained with the DLIR framework, it can be used to register pairs of unseen images in one shot. We propose flexible ConvNets designs for affine image registration and for deformable image registration. By stacking multiple of these ConvNets into a larger architecture, we are able to perform coarse-to-fine image registration. We show for registration of cardiac cine MRI and registration of chest CT that performance of the DLIR framework is comparable to conventional image registration while being several orders of magnitude faster.Comment: Accepted: Medical Image Analysis - Elsevie

    Mixed-Variable Bayesian Optimization

    Full text link
    The optimization of expensive to evaluate, black-box, mixed-variable functions, i.e. functions that have continuous and discrete inputs, is a difficult and yet pervasive problem in science and engineering. In Bayesian optimization (BO), special cases of this problem that consider fully continuous or fully discrete domains have been widely studied. However, few methods exist for mixed-variable domains and none of them can handle discrete constraints that arise in many real-world applications. In this paper, we introduce MiVaBo, a novel BO algorithm for the efficient optimization of mixed-variable functions combining a linear surrogate model based on expressive feature representations with Thompson sampling. We propose an effective method to optimize its acquisition function, a challenging problem for mixed-variable domains, making MiVaBo the first BO method that can handle complex constraints over the discrete variables. Moreover, we provide the first convergence analysis of a mixed-variable BO algorithm. Finally, we show that MiVaBo is significantly more sample efficient than state-of-the-art mixed-variable BO algorithms on several hyperparameter tuning tasks, including the tuning of deep generative models.Comment: IJCAI 2020 camera-ready; 17 pages, extended version with supplementary materia

    Accelerated deconvolution of radio interferometric images using orthogonal matching pursuit and graphics hardware

    Get PDF
    Deconvolution of native radio interferometric images constitutes a major computational component of the radio astronomy imaging process. An efficient and robust deconvolution operation is essential for reconstruction of the true sky signal from measured correlator data. Traditionally, radio astronomers have mostly used the CLEAN algorithm, and variants thereof. However, the techniques of compressed sensing provide a mathematically rigorous framework within which deconvolution of radio interferometric images can be implemented. We present an accelerated implementation of the orthogonal matching pursuit (OMP) algorithm (a compressed sensing method) that makes use of graphics processing unit (GPU) hardware, and show significant accuracy improvements over the standard CLEAN. In particular, we show that OMP correctly identifies more sources than CLEAN, identifying up to 82% of the sources in 100 test images, while CLEAN only identifies up to 61% of the sources. In addition, the residual after source extraction is 2.7 times lower for OMP than for CLEAN. Furthermore, the GPU implementation of OMP performs around 23 times faster than a 4-core CPU

    Advancing efficiency and robustness of neural networks for imaging

    Get PDF
    Enabling machines to see and analyze the world is a longstanding research objective. Advances in computer vision have the potential of influencing many aspects of our lives as they can enable machines to tackle a variety of tasks. Great progress in computer vision has been made, catalyzed by recent progress in machine learning and especially the breakthroughs achieved by deep artificial neural networks. Goal of this work is to alleviate limitations of deep neural networks that hinder their large-scale adoption for real-world applications. To this end, it investigates methodologies for constructing and training deep neural networks with low computational requirements. Moreover, it explores strategies for achieving robust performance on unseen data. Of particular interest is the application of segmenting volumetric medical scans because of the technical challenges it imposes, as well as its clinical importance. The developed methodologies are generic and of relevance to a broader computer vision and machine learning audience. More specifically, this work introduces an efficient 3D convolutional neural network architecture, which achieves high performance for segmentation of volumetric medical images, an application previously hindered by high computational requirements of 3D networks. It then investigates sensitivity of network performance on hyper-parameter configuration, which we interpret as overfitting the model configuration to the data available during development. It is shown that ensembling a set of models with diverse configurations mitigates this and improves generalization. The thesis then explores how to utilize unlabelled data for learning representations that generalize better. It investigates domain adaptation and introduces an architecture for adversarial networks tailored for adaptation of segmentation networks. Finally, a novel semi-supervised learning method is proposed that introduces a graph in the latent space of a neural network to capture relations between labelled and unlabelled samples. It then regularizes the embedding to form a compact cluster per class, which improves generalization.Open Acces

    Learning Probabilistic Coordinate Fields for Robust Correspondences

    Full text link
    We introduce Probabilistic Coordinate Fields (PCFs), a novel geometric-invariant coordinate representation for image correspondence problems. In contrast to standard Cartesian coordinates, PCFs encode coordinates in correspondence-specific barycentric coordinate systems (BCS) with affine invariance. To know \textit{when and where to trust} the encoded coordinates, we implement PCFs in a probabilistic network termed PCF-Net, which parameterizes the distribution of coordinate fields as Gaussian mixture models. By jointly optimizing coordinate fields and their confidence conditioned on dense flows, PCF-Net can work with various feature descriptors when quantifying the reliability of PCFs by confidence maps. An interesting observation of this work is that the learned confidence map converges to geometrically coherent and semantically consistent regions, which facilitates robust coordinate representation. By delivering the confident coordinates to keypoint/feature descriptors, we show that PCF-Net can be used as a plug-in to existing correspondence-dependent approaches. Extensive experiments on both indoor and outdoor datasets suggest that accurate geometric invariant coordinates help to achieve the state of the art in several correspondence problems, such as sparse feature matching, dense image registration, camera pose estimation, and consistency filtering. Further, the interpretable confidence map predicted by PCF-Net can also be leveraged to other novel applications from texture transfer to multi-homography classification.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Shape Representations Using Nested Descriptors

    Get PDF
    The problem of shape representation is a core problem in computer vision. It can be argued that shape representation is the most central representational problem for computer vision, since unlike texture or color, shape alone can be used for perceptual tasks such as image matching, object detection and object categorization. This dissertation introduces a new shape representation called the nested descriptor. A nested descriptor represents shape both globally and locally by pooling salient scaled and oriented complex gradients in a large nested support set. We show that this nesting property introduces a nested correlation structure that enables a new local distance function called the nesting distance, which provides a provably robust similarity function for image matching. Furthermore, the nesting property suggests an elegant flower like normalization strategy called a log-spiral difference. We show that this normalization enables a compact binary representation and is equivalent to a form a bottom up saliency. This suggests that the nested descriptor representational power is due to representing salient edges, which makes a fundamental connection between the saliency and local feature descriptor literature. In this dissertation, we introduce three examples of shape representation using nested descriptors: nested shape descriptors for imagery, nested motion descriptors for video and nested pooling for activities. We show evaluation results for these representations that demonstrate state-of-the-art performance for image matching, wide baseline stereo and activity recognition tasks

    Many-core Algorithms for Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is becoming ever more crucial, in these days. From natural sciences to economics, passing through urban centers administration and personnel management, methodologies and algorithms with a strong theoretical background and a consolidated real-word effectiveness is more and more requested, in order to find, quickly, good solutions to complex strategical problems. Resource optimization is, nowadays, a fundamental ground for building the basements of successful projects. From the theoretical point of view, Combinatorial Optimization rests on stable and strong foundations, that allow researchers to face ever more challenging problems. However, from the application point of view, it seems that the rate of theoretical developments cannot cope with that enjoyed by modern hardware technologies, especially with reference to the one of processors industry. In this work we propose new parallel algorithms, designed for exploiting the new parallel architectures available on the market. We found that, exposing the inherent parallelism of some resolution techniques (like Dynamic Programming), the computational benefits are remarkable, lowering the execution times by more than an order of magnitude, and allowing to address instances with dimensions not possible before. We approached four Combinatorial Optimization’s notable problems: Packing Problem, Vehicle Routing Problem, Single Source Shortest Path Problem and a Network Design problem. For each of these problems we propose a collection of effective parallel solution algorithms, either for solving the full problem (Guillotine Cuts and SSSPP) or for enhancing a fundamental part of the solution method (VRP and ND). We endorse our claim by presenting computational results for all problems, either on standard benchmarks from the literature or, when possible, on data from real-world applications, where speed-ups of one order of magnitude are usually attained, not uncommonly scaling up to 40 X factors

    Learning Equivariant Representations

    Get PDF
    State-of-the-art deep learning systems often require large amounts of data and computation. For this reason, leveraging known or unknown structure of the data is paramount. Convolutional neural networks (CNNs) are successful examples of this principle, their defining characteristic being the shift-equivariance. By sliding a filter over the input, when the input shifts, the response shifts by the same amount, exploiting the structure of natural images where semantic content is independent of absolute pixel positions. This property is essential to the success of CNNs in audio, image and video recognition tasks. In this thesis, we extend equivariance to other kinds of transformations, such as rotation and scaling. We propose equivariant models for different transformations defined by groups of symmetries. The main contributions are (i) polar transformer networks, achieving equivariance to the group of similarities on the plane, (ii) equivariant multi-view networks, achieving equivariance to the group of symmetries of the icosahedron, (iii) spherical CNNs, achieving equivariance to the continuous 3D rotation group, (iv) cross-domain image embeddings, achieving equivariance to 3D rotations for 2D inputs, and (v) spin-weighted spherical CNNs, generalizing the spherical CNNs and achieving equivariance to 3D rotations for spherical vector fields. Applications include image classification, 3D shape classification and retrieval, panoramic image classification and segmentation, shape alignment and pose estimation. What these models have in common is that they leverage symmetries in the data to reduce sample and model complexity and improve generalization performance. The advantages are more significant on (but not limited to) challenging tasks where data is limited or input perturbations such as arbitrary rotations are present
    • …
    corecore