11,360 research outputs found

    Extreme 3D Face Reconstruction: Seeing Through Occlusions

    Full text link
    Existing single view, 3D face reconstruction methods can produce beautifully detailed 3D results, but typically only for near frontal, unobstructed viewpoints. We describe a system designed to provide detailed 3D reconstructions of faces viewed under extreme conditions, out of plane rotations, and occlusions. Motivated by the concept of bump mapping, we propose a layered approach which decouples estimation of a global shape from its mid-level details (e.g., wrinkles). We estimate a coarse 3D face shape which acts as a foundation and then separately layer this foundation with details represented by a bump map. We show how a deep convolutional encoder-decoder can be used to estimate such bump maps. We further show how this approach naturally extends to generate plausible details for occluded facial regions. We test our approach and its components extensively, quantitatively demonstrating the invariance of our estimated facial details. We further provide numerous qualitative examples showing that our method produces detailed 3D face shapes in viewing conditions where existing state of the art often break down.Comment: Accepted to CVPR'18. Previously titled: "Extreme 3D Face Reconstruction: Looking Past Occlusions

    Robust statistical face frontalization

    Get PDF
    Recently, it has been shown that excellent results can be achieved in both facial landmark localization and pose-invariant face recognition. These breakthroughs are attributed to the efforts of the community to manually annotate facial images in many different poses and to collect 3D facial data. In this paper, we propose a novel method for joint frontal view reconstruction and landmark localization using a small set of frontal images only. By observing that the frontal facial image is the one having the minimum rank of all different poses, an appropriate model which is able to jointly recover the frontalized version of the face as well as the facial landmarks is devised. To this end, a suitable optimization problem, involving the minimization of the nuclear norm and the matrix l1 norm is solved. The proposed method is assessed in frontal face reconstruction, face landmark localization, pose-invariant face recognition, and face verification in unconstrained conditions. The relevant experiments have been conducted on 8 databases. The experimental results demonstrate the effectiveness of the proposed method in comparison to the state-of-the-art methods for the target problems
    • …
    corecore