497 research outputs found

    Edge-Caching Wireless Networks: Performance Analysis and Optimization

    Get PDF
    Edge-caching has received much attention as an efficient technique to reduce delivery latency and network congestion during peak-traffic times by bringing data closer to end users. Existing works usually design caching algorithms separately from physical layer design. In this paper, we analyse edge-caching wireless networks by taking into account the caching capability when designing the signal transmission. Particularly, we investigate multi-layer caching where both base station (BS) and users are capable of storing content data in their local cache and analyse the performance of edge-caching wireless networks under two notable uncoded and coded caching strategies. Firstly, we propose a coded caching strategy that is applied to arbitrary values of cache size. The required backhaul and access rates are derived as a function of the BS and user cache size. Secondly, closed-form expressions for the system energy efficiency (EE) corresponding to the two caching methods are derived. Based on the derived formulas, the system EE is maximized via precoding vectors design and optimization while satisfying a predefined user request rate. Thirdly, two optimization problems are proposed to minimize the content delivery time for the two caching strategies. Finally, numerical results are presented to verify the effectiveness of the two caching methods.Comment: to appear in IEEE Trans. Wireless Commu

    Adaptive Delivery in Caching Networks

    Full text link
    The problem of content delivery in caching networks is investigated for scenarios where multiple users request identical files. Redundant user demands are likely when the file popularity distribution is highly non-uniform or the user demands are positively correlated. An adaptive method is proposed for the delivery of redundant demands in caching networks. Based on the redundancy pattern in the current demand vector, the proposed method decides between the transmission of uncoded messages or the coded messages of [1] for delivery. Moreover, a lower bound on the delivery rate of redundant requests is derived based on a cutset bound argument. The performance of the adaptive method is investigated through numerical examples of the delivery rate of several specific demand vectors as well as the average delivery rate of a caching network with correlated requests. The adaptive method is shown to considerably reduce the gap between the non-adaptive delivery rate and the lower bound. In some specific cases, using the adaptive method, this gap shrinks by almost 50% for the average rate.Comment: 8 pages,8 figures. Submitted to IEEE transaction on Communications in 2015. A short version of this article was published as an IEEE Communications Letter with DOI: 10.1109/LCOMM.2016.255814

    Optimizing MDS Codes for Caching at the Edge

    Full text link
    In this paper we investigate the problem of optimal MDS-encoded cache placement at the wireless edge to minimize the backhaul rate in heterogeneous networks. We derive the backhaul rate performance of any caching scheme based on file splitting and MDS encoding and we formulate the optimal caching scheme as a convex optimization problem. We then thoroughly investigate the performance of this optimal scheme for an important heterogeneous network scenario. We compare it to several other caching strategies and we analyze the influence of the system parameters, such as the popularity and size of the library files and the capabilities of the small-cell base stations, on the overall performance of our optimal caching strategy. Our results show that the careful placement of MDS-encoded content in caches at the wireless edge leads to a significant decrease of the load of the network backhaul and hence to a considerable performance enhancement of the network.Comment: to appear in Globecom 201
    corecore