14,845 research outputs found

    Tight steering inequalities from generalized entropic uncertainty relations

    Full text link
    We establish a general connection between entropic uncertainty relations, Einstein-Podolsky-Rosen steering, and joint measurability. Specifically, we construct steering inequalities from any entropic uncertainty relation, given that the latter satisfies two natural properties. We obtain steering inequalities based on R\'enyi entropies. These turn out to be tight in many scenarios, using max- and min-entropy. Considering steering tests with two noisy measurements, our inequalities exactly recover the noise threshold for steerability. This is the case for any pair of qubit 2-outcome measurements, as well as for pairs of mutually unbiased bases in any dimension. This shows that easy-to-evaluate quantities such as entropy can optimally witness steering, despite the fact that they are coarse-grained representations of the underlying statistics

    Quantum to Classical Randomness Extractors

    Full text link
    The goal of randomness extraction is to distill (almost) perfect randomness from a weak source of randomness. When the source yields a classical string X, many extractor constructions are known. Yet, when considering a physical randomness source, X is itself ultimately the result of a measurement on an underlying quantum system. When characterizing the power of a source to supply randomness it is hence a natural question to ask, how much classical randomness we can extract from a quantum system. To tackle this question we here take on the study of quantum-to-classical randomness extractors (QC-extractors). We provide constructions of QC-extractors based on measurements in a full set of mutually unbiased bases (MUBs), and certain single qubit measurements. As the first application, we show that any QC-extractor gives rise to entropic uncertainty relations with respect to quantum side information. Such relations were previously only known for two measurements. As the second application, we resolve the central open question in the noisy-storage model [Wehner et al., PRL 100, 220502 (2008)] by linking security to the quantum capacity of the adversary's storage device.Comment: 6+31 pages, 2 tables, 1 figure, v2: improved converse parameters, typos corrected, new discussion, v3: new reference

    Entropic uncertainty relations - A survey

    Get PDF
    Uncertainty relations play a central role in quantum mechanics. Entropic uncertainty relations in particular have gained significant importance within quantum information, providing the foundation for the security of many quantum cryptographic protocols. Yet, rather little is known about entropic uncertainty relations with more than two measurement settings. In this note we review known results and open questions.Comment: 12 pages, revte
    • 

    corecore