81 research outputs found

    Octonion special affine fourier transform: pitt's inequality and the uncertainty principles

    Get PDF
    The special affine Fourier transform (SAFT) is an extended version of the classical Fourier transform and incorporates various signal processing tools which include the Fourier transforms, the fractional Fourier transform, the linear canonical transform, and other related transforms. This paper aims to introduce a novel octonion special affine Fourier transform (O-SAFT) and establish several classes of uncertainty inequalities for the proposed transform. We begin by studying the norm split and energy conservation properties of the proposed (O-SAFT). Afterwards, we generalize several uncertainty relations for the (O-SAFT) which include Pitt's inequality, Heisenberg-Weyl inequality, logarithmic uncertainty inequality, Hausdorff-Young inequality, and local uncertainty inequalities. Finally, we provide an illustrative example and some possible applications of the proposed transform

    A quantum wavelet uncertainty principle

    Full text link
    The aim of this paper is to derive a new uncertainty principle for the generalized qq-Bessel wavelet transform studied earlier in \cite{Rezguietal}. In this paper, an uncertainty principle associated with wavelet transforms in the qq-calculus framework has been established. A two-parameters extension of the classical Bessel operator is applied to generate a wavelet function which is exploited next to explore a wavelet uncertainty principle already in the qq-calculus framework.Comment: 16 page

    Clifford algebras, Fourier transforms and quantum mechanics

    Full text link
    In this review, an overview is given of several recent generalizations of the Fourier transform, related to either the Lie algebra sl_2 or the Lie superalgebra osp(1|2). In the former case, one obtains scalar generalizations of the Fourier transform, including the fractional Fourier transform, the Dunkl transform, the radially deformed Fourier transform and the super Fourier transform. In the latter case, one has to use the framework of Clifford analysis and arrives at the Clifford-Fourier transform and the radially deformed hypercomplex Fourier transform. A detailed exposition of all these transforms is given, with emphasis on aspects such as eigenfunctions and spectrum of the transform, characterization of the integral kernel and connection with various special functions.Comment: Review paper, 39 pages, to appear in Math. Methods. Appl. Sc

    Convolution theorems associated with quaternion linear canonical transform and applications

    Full text link
    Novel types of convolution operators for quaternion linear canonical transform (QLCT) are proposed. Type one and two are defined in the spatial and QLCT spectral domains, respectively. They are distinct in the quaternion space and are consistent once in complex or real space. Various types of convolution formulas are discussed. Consequently, the QLCT of the convolution of two quaternionic functions can be implemented by the product of their QLCTs, or the summation of the products of their QLCTs. As applications, correlation operators and theorems of the QLCT are derived. The proposed convolution formulas are used to solve Fredholm integral equations with special kernels. Some systems of second-order partial differential equations, which can be transformed into the second-order quaternion partial differential equations, can be solved by the convolution formulas as well. As a final point, we demonstrate that the convolution theorem facilitates the design of multiplicative filters

    Relation between Quaternion Fourier Transform and Quaternion Wigner-Ville Distribution Associated with Linear Canonical Transform

    Get PDF
    The quaternion Wigner-Ville distribution associated with linear canonical transform (QWVD-LCT) is a nontrivial generalization of the quaternion Wigner-Ville distribution to the linear canonical transform (LCT) domain. In the present paper, we establish a fundamental relationship between the QWVD-LCT and the quaternion Fourier transform (QFT). Based on this fact, we provide alternative proof of the well-known properties of the QWVD-LCT such as inversion formula and Moyal formula. We also discuss in detail the relationship among the QWVD-LCT and other generalized transforms. Finally, based on the basic relation between the quaternion ambiguity function associated with the linear canonical transform (QAF-LCT) and the QFT, we present some important properties of the QAF-LCT
    corecore