71,152 research outputs found

    Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information

    Full text link
    A rigorous lower bound is obtained for the average resolution of any estimate of a shift parameter, such as an optical phase shift or a spatial translation. The bound has the asymptotic form k_I/ where G is the generator of the shift (with an arbitrary discrete or continuous spectrum), and hence establishes a universally applicable bound of the same form as the usual Heisenberg limit. The scaling constant k_I depends on prior information about the shift parameter. For example, in phase sensing regimes, where the phase shift is confined to some small interval of length L, the relative resolution \delta\hat{\Phi}/L has the strict lower bound (2\pi e^3)^{-1/2}/, where m is the number of probes, each with generator G_1, and entangling joint measurements are permitted. Generalisations using other resource measures and including noise are briefly discussed. The results rely on the derivation of general entropic uncertainty relations for continuous observables, which are of interest in their own right.Comment: v2:new bound added for 'ignorance respecting estimates', some clarification

    Robust regression with imprecise data

    Get PDF
    We consider the problem of regression analysis with imprecise data. By imprecise data we mean imprecise observations of precise quantities in the form of sets of values. In this paper, we explore a recently introduced likelihood-based approach to regression with such data. The approach is very general, since it covers all kinds of imprecise data (i.e. not only intervals) and it is not restricted to linear regression. Its result consists of a set of functions, reflecting the entire uncertainty of the regression problem. Here we study in particular a robust special case of the likelihood-based imprecise regression, which can be interpreted as a generalization of the method of least median of squares. Moreover, we apply it to data from a social survey, and compare it with other approaches to regression with imprecise data. It turns out that the likelihood-based approach is the most generally applicable one and is the only approach accounting for multiple sources of uncertainty at the same time
    • …
    corecore