13,319 research outputs found

    A Novel Method of the Generalized Interval-Valued Fuzzy Rough Approximation Operators

    Get PDF
    Rough set theory is a suitable tool for dealing with the imprecision, uncertainty, incompleteness, and vagueness of knowledge. In this paper, new lower and upper approximation operators for generalized fuzzy rough sets are constructed, and their definitions are expanded to the interval-valued environment. Furthermore, the properties of this type of rough sets are analyzed. These operators are shown to be equivalent to the generalized interval fuzzy rough approximation operators introduced by Dubois, which are determined by any interval-valued fuzzy binary relation expressed in a generalized approximation space. Main properties of these operators are discussed under different interval-valued fuzzy binary relations, and the illustrative examples are given to demonstrate the main features of the proposed operators

    On the Relation of Probability, Fuzziness, Rough and Evidence Theory

    Get PDF
    Since the appearance of the first paper on fuzzy sets proposed by Zadeh in 1965, the relationship between probability and fuzziness in the representation of uncertainty has been discussed among many people. The question is whether probability theory itself is sufficient to deal with uncertainty. In this paper the relationship between probability and fuzziness is analyzed by the process of perception to simply understand the relationship between them. It is clear that probability and fuzziness work in different areas of uncertainty. Here, fuzzy event in the presence of probability theory provides probability of fuzzy event in which fuzzy event could be regarded as a generalization of crisp event. Moreover, in rough set theory, a rough event is proposed representing two approximate events, namely lower approximate event and upper approximate event. Similarly, in the presence of probability theory, rough event can be extended to be probability of rough event. Finally, the paper shows and discusses relation among lower-upper approximate probability (probability of rough events), belief-plausibility measures (evidence theory), classical probability measures, probability of generalized fuzzy-rough events and probability of fuzzy events

    Algebraic Models for Qualified Aggregation in General Rough Sets, and Reasoning Bias Discovery

    Full text link
    In the context of general rough sets, the act of combining two things to form another is not straightforward. The situation is similar for other theories that concern uncertainty and vagueness. Such acts can be endowed with additional meaning that go beyond structural conjunction and disjunction as in the theory of ∗*-norms and associated implications over LL-fuzzy sets. In the present research, algebraic models of acts of combining things in generalized rough sets over lattices with approximation operators (called rough convenience lattices) is invented. The investigation is strongly motivated by the desire to model skeptical or pessimistic, and optimistic or possibilistic aggregation in human reasoning, and the choice of operations is constrained by the perspective. Fundamental results on the weak negations and implications afforded by the minimal models are proved. In addition, the model is suitable for the study of discriminatory/toxic behavior in human reasoning, and of ML algorithms learning such behavior.Comment: 15 Pages. Accepted. IJCRS-202

    Study on Rough Sets and Fuzzy Sets in Constructing Intelligent Information System

    Get PDF
    Since human being is not an omniscient and omnipotent being, we are actually living in an uncertain world. Uncertainty was involved and connected to every aspect of human life as a quotation from Albert Einstein said: �As far as the laws of mathematics refer to reality, they are not certain. And as far as they are certain, they do not refer to reality.� The most fundamental aspect of this connection is obviously shown in human communication. Naturally, human communication is built on the perception1-based information instead of measurement-based information in which perceptions play a central role in human cognition [Zadeh, 2000]. For example, it is naturally said in our communication that �My house is far from here.� rather than let say �My house is 12,355 m from here�. Perception-based information is a generalization of measurement-based information, where perception-based information such as �John is excellent.� is hard to represent by measurement-based version. Perceptions express human subjective view. Consequently, they tend to lead up to misunderstanding. Measurements then are needed such as defining units of length, time, etc., to provide objectivity as a means to overcome misunderstanding. Many measurers were invented along with their methods and theories of measurement. Hence, human cannot communicate with measurers including computer as a product of measurement era unless he uses measurement-based information. Perceptions are intrinsic aspect in uncertainty-based information. In this case, information may be incomplete, imprecise, fragmentary, not fully reliable, vague, contradictory, or deficient in some other way. 1In psychology, perception is understood as a process of translating sensory stimulation into an organized experience Generally, these various information deficiencies may express different types of uncertainty. It is necessary to construct a computer-based information system called intelligent information system that can process uncertainty-based information. In the future, computers are expected to be able to make communication with human in the level of perception. Many theories were proposed to express and process the types of uncertainty such as probability, possibility, fuzzy sets, rough sets, chaos theory and so on. This book extends and generalizes existing theory of rough set, fuzzy sets and granular computing for the purpose of constructing intelligent information system. The structure of this book is the following: In Chapter 2, types of uncertainty in the relation to fuzziness, probability and evidence theory (belief and plausibility measures) are briefly discussed. Rough set regarded as another generalization of crisp set is considered to represent rough event in the connection to the probability theory. Special attention will be given to formulation of fuzzy conditional probability relation generated by property of conditional probability of fuzzy event. Fuzzy conditional probability relation then is used to represent similarity degree of two fuzzy labels. Generalization of rough set induced by fuzzy conditional probability relation in terms of covering of the universe is given in Chapter 3. In the relation to fuzzy conditional probability relation, it is necessary to consider an interesting mathematical relation called weak fuzzy similarity relation as a generalization of fuzzy similarity relation proposed by Zadeh [1995]. Fuzzy rough set and generalized fuzzy rough set are proposed along with the generalization of rough membership function. Their properties are examined. Some applications of these methods in information system such as α-redundancy of object and dependency of domain attributes are discussed. In addition, multi rough sets based on multi-context of attributes in the presence of multi-contexts information system is defined and proposed in Chapter 4. In the real application, depending on the context, a given object may have different values of attributes. In other words, set of attributes might be represented based on different context, where they may provide different values for a given object. Context can be viewed as background or situation in which somehow it is necessary to group some attributes as a subset of attributes and consider the subset as a context. Finally, Chapter 5 summarizes all discussed in this book and puts forward some future topics of research

    A comprehensive study of implicator-conjunctor based and noise-tolerant fuzzy rough sets: definitions, properties and robustness analysis

    Get PDF
    © 2014 Elsevier B.V. Both rough and fuzzy set theories offer interesting tools for dealing with imperfect data: while the former allows us to work with uncertain and incomplete information, the latter provides a formal setting for vague concepts. The two theories are highly compatible, and since the late 1980s many researchers have studied their hybridization. In this paper, we critically evaluate most relevant fuzzy rough set models proposed in the literature. To this end, we establish a formally correct and unified mathematical framework for them. Both implicator-conjunctor-based definitions and noise-tolerant models are studied. We evaluate these models on two different fronts: firstly, we discuss which properties of the original rough set model can be maintained and secondly, we examine how robust they are against both class and attribute noise. By highlighting the benefits and drawbacks of the different fuzzy rough set models, this study appears a necessary first step to propose and develop new models in future research.Lynn D’eer has been supported by the Ghent University Special Research Fund, Chris Cornelis was partially supported by the Spanish Ministry of Science and Technology under the project TIN2011-28488 and the Andalusian Research Plans P11-TIC-7765 and P10-TIC-6858, and by project PYR-2014-8 of the Genil Program of CEI BioTic GRANADA and Lluis Godo has been partially supported by the Spanish MINECO project EdeTRI TIN2012-39348-C02-01Peer Reviewe
    • …
    corecore