910 research outputs found

    Control Of Rigid Robots With Large Uncertainties Using The Function Approximation Technique

    Get PDF
    This dissertation focuses on the control of rigid robots that cannot easily be modeled due to complexity and large uncertainties. The function approximation technique (FAT), which represents uncertainties as finite linear combinations of orthonormal basis functions, provides an alternate form of robot control - in situations where the dynamic equation cannot easily be modeled - with no dependency on the use of model information or training data. This dissertation has four aims - using the FAT - to improve controller efficiency and robustness in scenarios where reliable mathematical models cannot easily be derived or are otherwise unavailable. The first aim is to analyze the uncertain combination of a test robot and prosthesis in a scenario where the test robot and prosthesis are adequately controlled by different controllers - this is tied to efficiency. We develop a hybrid FAT controller, theoretically prove stability, and verify its performance using computer simulations. We show that systematically combining controllers can improve controller analysis and yield desired performance. In the second aim addressed in this dissertation, we investigate the simplification of the adaptive FAT controller complexity for ease of implementation - this is tied to efficiency. We achieve this by applying the passivity property and prove controller stability. We conduct computer simulations on a rigid robot under good and poor initial conditions to demonstrate the effectiveness of the controller. For an n degrees of freedom (DOFs) robot, we see a reduction of controller tuning parameters by 2n. The third aim addressed in this dissertation is the extension of the adaptive FAT controller to the robust control framework - this is tied to robustness. We invent a novel robust controller based on the FAT that uses continuous switching laws and eliminates the dependency on update laws. The controller, when compared against three state-of-the-art controllers via computer simulations and experimental tests on a rigid robot, shows good performance and robustness to fast time-varying uncertainties and random parameter perturbations. This introduces the first purely robust FAT-based controller. The fourth and final aim addressed in this dissertation is the development of a more compact form of the robust FAT controller developed in aim~3 - this is tied to efficiency and robustness. We investigate the simplification of the control structure and its applicability to a broader class of systems that can be modeled via the state-space approach. Computer simulations and experimental tests on a rigid robot demonstrate good controller performance and robustness to fast time-varying uncertainties and random parameter perturbations when compared to the robust FAT controller developed in aim 3. For an n-DOF robot, we see a reduction in the number of switching laws from 3 to 1

    Design of Adaptive Switching Controller for Robotic Manipulators with Disturbance

    Get PDF
    Two adaptive switching control strategies are proposed for the trajectory tracking problem of robotic manipulator in this paper. The first scheme is designed for the supremum of the bounded disturbance for robot manipulator being known; while the supremum is not known, the second scheme is proposed. Each proposed scheme consists of an adaptive switching law and a PD controller. Based on the Lyapunov stability theorem, it is shown that two new schemes can guarantee tracking performance of the robotic manipulator and be adapted to the alternating unknown loads. Simulations for two-link robotic manipulator are carried out and show that the two schemes can avoid the overlarge input torque, and the feasibility and validity of the proposed control schemes are proved

    An indirect adaptive neuro-fuzzy speed control of induction motors

    Get PDF
    This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. The uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of induction motors. The online training of the neuro-fuzzy systems is based on the Lyapunov stability analysis and the reconstruction errors of the neuro-fuzzy systems are compensated in order to guarantee the asymptotic convergence of the speed tracking error. Moreover, to improve the control system performance and reduce the chattering, a PI structure is used to produce the input of the neuro-fuzzy systems. Finally, simulation results verify high performance characteristics and robustness of the proposed control system against plant parameter variation, external load and input voltage disturbance

    Model Identification and Control Design for a Humanoid Robot

    Get PDF
    In this paper, model identification and adaptive control design are performed on Devanit-Hartenberg model of a humanoid robot. We focus on the modeling of the 6 degree-of-freedom upper limb of the robot using recursive Newton-Euler (RNE) formula for the coordinate frame of each joint. To obtain sufficient excitation for modeling of the robot, the particle swarm optimization method has been employed to optimize the trajectory of each joint, such that satisfied parameter estimation can be obtained. In addition, the estimated inertia parameters are taken as the initial values for the RNE-based adaptive control design to achieve improved tracking performance. Simulation studies have been carried out to verify the result of the identification algorithm and to illustrate the effectiveness of the control design

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Machine Learning and System Identification for Estimation in Physical Systems

    Get PDF
    In this thesis, we draw inspiration from both classical system identification and modern machine learning in order to solve estimation problems for real-world, physical systems. The main approach to estimation and learning adopted is optimization based. Concepts such as regularization will be utilized for encoding of prior knowledge and basis-function expansions will be used to add nonlinear modeling power while keeping data requirements practical.The thesis covers a wide range of applications, many inspired by applications within robotics, but also extending outside this already wide field.Usage of the proposed methods and algorithms are in many cases illustrated in the real-world applications that motivated the research.Topics covered include dynamics modeling and estimation, model-based reinforcement learning, spectral estimation, friction modeling and state estimation and calibration in robotic machining.In the work on modeling and identification of dynamics, we develop regularization strategies that allow us to incorporate prior domain knowledge into flexible, overparameterized models. We make use of classical control theory to gain insight into training and regularization while using tools from modern deep learning. A particular focus of the work is to allow use of modern methods in scenarios where gathering data is associated with a high cost.In the robotics-inspired parts of the thesis, we develop methods that are practically motivated and make sure that they are implementable also outside the research setting. We demonstrate this by performing experiments in realistic settings and providing open-source implementations of all proposed methods and algorithms

    Modeling and Control of Flexible Link Manipulators

    Get PDF
    Autonomous maritime navigation and offshore operations have gained wide attention with the aim of reducing operational costs and increasing reliability and safety. Offshore operations, such as wind farm inspection, sea farm cleaning, and ship mooring, could be carried out autonomously or semi-autonomously by mounting one or more long-reach robots on the ship/vessel. In addition to offshore applications, long-reach manipulators can be used in many other engineering applications such as construction automation, aerospace industry, and space research. Some applications require the design of long and slender mechanical structures, which possess some degrees of flexibility and deflections because of the material used and the length of the links. The link elasticity causes deflection leading to problems in precise position control of the end-effector. So, it is necessary to compensate for the deflection of the long-reach arm to fully utilize the long-reach lightweight flexible manipulators. This thesis aims at presenting a unified understanding of modeling, control, and application of long-reach flexible manipulators. State-of-the-art dynamic modeling techniques and control schemes of the flexible link manipulators (FLMs) are discussed along with their merits, limitations, and challenges. The kinematics and dynamics of a planar multi-link flexible manipulator are presented. The effects of robot configuration and payload on the mode shapes and eigenfrequencies of the flexible links are discussed. A method to estimate and compensate for the static deflection of the multi-link flexible manipulators under gravity is proposed and experimentally validated. The redundant degree of freedom of the planar multi-link flexible manipulator is exploited to minimize vibrations. The application of a long-reach arm in autonomous mooring operation based on sensor fusion using camera and light detection and ranging (LiDAR) data is proposed.publishedVersio

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    Parameter identification and model based control of direct drive robots

    Get PDF
    Imperial Users onl
    • …
    corecore