10,642 research outputs found

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods

    Enhanced genetic algorithm-based fuzzy multiobjective strategy to multiproduct batch plant design

    Get PDF
    The design of such plants necessary involves how equipment may be utilized, which means that plant scheduling and production must form an integral part of the design problem. This work proposes an alternative treatment of the imprecision (demands) by using fuzzy concepts. In this study, we introduce a new approach to the design problem based on a multiobjective genetic algorithm, taking into account simultaneously maximization of the net present value NPV ~ and two other performance criteria, i.e. the production delay/advance and a flexibility criterion. The methodology provides a set of scenarios that are helpful to the decision’s maker and constitutes a very promising framework for taken imprecision into account in new product development stage. Besides, a hybrid selection method Pareto rank-tournament was proposed and showed a better performance than the classical Goldberg’s wheel, systematically leading to a higher number of non-dominated solutions

    Enhanced genetic algorithm-based fuzzy multiobjective strategy to multiproduct batch plant design

    Get PDF
    This paper addresses the problem of the optimal design of batch plants with imprecise demands in product amounts. The design of such plants necessary involves how equipment may be utilized, which means that plant scheduling and production must constitute a basic part of the design problem. Rather than resorting to a traditional probabilistic approach for modeling the imprecision on product demands, this work proposes an alternative treatment by using fuzzy concepts. The design problem is tackled by introducing a new approach based on a multiobjective genetic algorithm, combined wit the fuzzy set theory for computing the objectives as fuzzy quantities. The problem takes into account simultaneous maximization of the fuzzy net present value and of two other performance criteria, i.e. the production delay/advance and a flexibility index. The delay/advance objective is computed by comparing the fuzzy production time for the products to a given fuzzy time horizon, and the flexibility index represents the additional fuzzy production that the plant would be able to produce. The multiobjective optimization provides the Pareto's front which is a set of scenarios that are helpful for guiding the decision's maker in its final choices. About the solution procedure, a genetic algorithm was implemented since it is particularly well-suited to take into account the arithmetic of fuzzy numbers. Furthermore because a genetic algorithm is working on populations of potential solutions, this type of procedure is well adapted for multiobjective optimization

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    A Two-Warehouse Model for Deteriorating Items with Holding Cost under Particle Swarm Optimization

    Full text link
    A deterministic inventory model has been developed for deteriorating items and Particle Swarm Optimization (PSO) having a ramp type demands with the effects of inflation with two-warehouse facilities. The owned warehouse (OW) has a fixed capacity of W units; the rented warehouse (RW) has unlimited capacity. Here, we assumed that the inventory holding cost in RW is higher than those in OW. Shortages in inventory are allowed and partially backlogged and Particle Swarm Optimization (PSO) it is assumed that the inventory deteriorates over time at a variable deterioration rate. The effect of inflation has also been considered for various costs associated with the inventory system and Particle Swarm Optimization (PSO). Numerical example is also used to study the behaviour of the model. Cost minimization technique is used to get the expressions for total cost and other parameters

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    • 

    corecore