5,713 research outputs found

    On the Modeling of Dynamic-Systems using Sequence-based Deep Neural-Networks

    Get PDF
    The objective of this thesis is the adaptation and development of sequence-based Neural-Networks (NNs) applied to the modeling of dynamic systems. More specifically, we will focus our study on 2 sub-problems: the modeling of time-series, the modeling and control of multiple-input multiple-output (MIMO) systems. These 2 sub-problems will be explored through the modeling of crops, and the modeling and control of robots. To solve these problems, we build on NNs and training schemes allowing our models to out-perform the state-of-the-art results in their respective fields. In the irrigation field, we show that NNs are powerful tools capable of modeling the water consumption of crops while observing only a portion of what is currently required by reference methods. We further demonstrate the potential of NNs by inferring irrigation recommendations in real-time. In robotics, we show that prioritization techniques can be used to learn better robot dynamic models. We apply the models learned using these methods inside an Model Predictive Control (MPC) controller, further demonstrating their benefits. Additionally, we leverage Dreamer, an Model Based Reinforcement Learning (MBRL) agent, to solve visuomotor tasks. We demonstrate that MBRL controllers can be used for sensor-based control on real robots without being trained on real systems. Adding to this result, we developed a physics-guided variant of DREAMER. This variation of the original algorithm is more flexible and designed for mobile robots. This novel framework enables reusing previously learned dynamics and transferring environment knowledge to other robots. Furthermore, using this new model, we train agents to reach various goals without interacting with the system. This increases the reusability of the learned models and makes for a highly data-efficient learning scheme. Moreover, this allows for efficient dynamics randomization, creating robust agents that transfer well to unseen dynamics.Ph.D

    Integrating Multiple Sources of Knowledge for the Intelligent Detection of Anomalous Sensory Data in a Mobile Robot

    Get PDF
    For service robots to expand in everyday scenarios they must be able to identify and manage abnormal situations intelligently. In this paper we work at a basic sensor level, by dealing with raw data produced by diverse devices subjected to some negative circumstances such as adverse environmental conditions or difficult to perceive objects. We have implemented a probabilistic Bayesian inference process for deducing whether the sensors are working nominally or not, which abnormal situation occurs, and even to correct their data. Our inference system works by integrating in a rigorous and homogeneous mathematical framework multiple sources and modalities of knowledge: human expert, external information systems, application-specific and temporal. The results on a real service robot navigating in a structured mixed indoor-outdoor environment demonstrate good detection capabilities and set a promising basis for improving robustness and safety in many common service tasks.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 333)

    Get PDF
    This bibliography lists 122 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Collaborative Robotic Path Planning for Industrial Spraying Operations on Complex Geometries

    Get PDF
    Implementation of automated robotic solutions for complex tasks currently faces a few major hurdles. For instance, lack of effective sensing and task variability – especially in high-mix/low-volume processes – creates too much uncertainty to reliably hard-code a robotic work cell. Current collaborative frameworks generally focus on integrating the sensing required for a physically collaborative implementation. While this paradigm has proven effective for mitigating uncertainty by mixing human cognitive function and fine motor skills with robotic strength and repeatability, there are many instances where physical interaction is impractical but human reasoning and task knowledge is still needed. The proposed framework consists of key modules such as a path planner, path simulator, and result simulator. An integrated user interface facilitates the operator to interact with these modules and edit the path plan before ultimately approving the task for automatic execution by a manipulator that need not be collaborative. Application of the collaborative framework is illustrated for a pressure washing task in a remanufacturing environment that requires one-off path planning for each part. The framework can also be applied to various other tasks, such as spray-painting, sandblasting, deburring, grinding, and shot peening. Specifically, automated path planning for industrial spraying operations offers the potential to automate surface preparation and coating in such environments. Autonomous spray path planners in the literature have been limited to generally continuous and convex surfaces, which is not true of most real parts. There is a need for planners that consistently handle concavities and discontinuities, such as sharp corners, holes, protrusions or other surface abnormalities when building a path. The path planner uses a slicing-based method to generate path trajectories. It identifies and quantifies the importance of concavities and surface abnormalities and whether they should be considered in the path plan by comparing the true part geometry to the convex hull path. If necessary, the path is then adapted by adjusting the movement speed or offset distance at individual points along the path. Which adaptive method is more effective and the trade-offs associated with adapting the path are also considered in the development of the path planner

    Machine Vision: Approaches and Limitations

    Get PDF
    corecore