5 research outputs found

    Cost sensitive meta-learning

    Get PDF
    Classification is one of the primary tasks of data mining and aims to assign a class label to unseen examples by using a model learned from a training dataset. Most of the accepted classifiers are designed to minimize the error rate but in practice data mining involves costs such as the cost of getting the data, and cost of making an error. Hence the following question arises:Among all the available classification algorithms, and in considering a specific type of data and cost, which is the best algorithm for my problem?It is well known to the machine learning community that there is no single algorithm that performs best for all domains. This observation motivates the need to develop an “algorithm selector” which is the work of automating the process of choosing between different algorithms given a specific domain of application. Thus, this research develops a new meta-learning system for recommending cost-sensitive classification methods. The system is based on the idea of applying machine learning to discover knowledge about the performance of different data mining algorithms. It includes components that repeatedly apply different classification methods on data sets and measuring their performance. The characteristics of the data sets, combined with the algorithm and the performance provide the training examples. A decision tree algorithm is applied on the training examples to induce the knowledge which can then be applied to recommend algorithms for new data sets, and then active learning is used to automate the ability to choose the most informative data set that should enter the learning process.This thesis makes contributions to both the fields of meta-learning, and cost sensitive learning in that it develops a new meta-learning approach for recommending cost-sensitive methods. Although, meta-learning is not new, the task of accelerating the learning process remains an open problem, and the thesis develops a novel active learning strategy based on clustering that gives the learner the ability to choose which data to learn from and accordingly, speed up the meta-learning process.Both the meta-learning system and use of active learning are implemented in the WEKA system and evaluated by applying them on different datasets and comparing the results with existing studies available in the literature. The results show that the meta-learning system developed produces better results than METAL, a well-known meta-learning system and that the use of clustering and active learning has a positive effect on accelerating the meta-learning process, where all tested datasets show a decrement of error rate prediction by 75 %

    Metalearning

    Get PDF
    This open access book as one of the fastest-growing areas of research in machine learning, metalearning studies principled methods to obtain efficient models and solutions by adapting machine learning and data mining processes. This adaptation usually exploits information from past experience on other tasks and the adaptive processes can involve machine learning approaches. As a related area to metalearning and a hot topic currently, automated machine learning (AutoML) is concerned with automating the machine learning processes. Metalearning and AutoML can help AI learn to control the application of different learning methods and acquire new solutions faster without unnecessary interventions from the user. This book offers a comprehensive and thorough introduction to almost all aspects of metalearning and AutoML, covering the basic concepts and architecture, evaluation, datasets, hyperparameter optimization, ensembles and workflows, and also how this knowledge can be used to select, combine, compose, adapt and configure both algorithms and models to yield faster and better solutions to data mining and data science problems. It can thus help developers to develop systems that can improve themselves through experience. This book is a substantial update of the first edition published in 2009. It includes 18 chapters, more than twice as much as the previous version. This enabled the authors to cover the most relevant topics in more depth and incorporate the overview of recent research in the respective area. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining, data science and artificial intelligence. ; Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence
    corecore