96,662 research outputs found

    What May Visualization Processes Optimize?

    Full text link
    In this paper, we present an abstract model of visualization and inference processes and describe an information-theoretic measure for optimizing such processes. In order to obtain such an abstraction, we first examined six classes of workflows in data analysis and visualization, and identified four levels of typical visualization components, namely disseminative, observational, analytical and model-developmental visualization. We noticed a common phenomenon at different levels of visualization, that is, the transformation of data spaces (referred to as alphabets) usually corresponds to the reduction of maximal entropy along a workflow. Based on this observation, we establish an information-theoretic measure of cost-benefit ratio that may be used as a cost function for optimizing a data visualization process. To demonstrate the validity of this measure, we examined a number of successful visualization processes in the literature, and showed that the information-theoretic measure can mathematically explain the advantages of such processes over possible alternatives.Comment: 10 page

    Direct and indirect effects of mood on risk decision making in safety-critical workers

    Get PDF
    The study aimed to examine the direct influence of specific moods (fatigue, anxiety, happiness) on risk in safety-critical decision making. It further aimed to explore indirect effects, specifically, the potential mediating effects of information processing assessed using a goodness-of-simulation task. Trait fatigue and anxiety were associated with an increase in risk taking on the Safety-Critical Personal Risk Inventory (S-CPRI), however the effect of fatigue was partialled out by anxiety. Trait happiness, in contrast was related to less risky decision making. Findings concerning the ability to simulate suggest that better simulators made less risky decisions. Anxious workers were generally less able to simulate. It is suggested that in this safety-critical environment happiness had a direct effect on risk decision making while the effect of trait anxiety was mediated by goodness-of-simulation

    Cognitive load theory, educational research, and instructional design: some food for thought

    Get PDF
    Cognitive load is a theoretical notion with an increasingly central role in the educational research literature. The basic idea of cognitive load theory is that cognitive capacity in working memory is limited, so that if a learning task requires too much capacity, learning will be hampered. The recommended remedy is to design instructional systems that optimize the use of working memory capacity and avoid cognitive overload. Cognitive load theory has advanced educational research considerably and has been used to explain a large set of experimental findings. This article sets out to explore the open questions and the boundaries of cognitive load theory by identifying a number of problematic conceptual, methodological and application-related issues. It concludes by presenting a research agenda for future studies of cognitive load

    Measuring cognitive load and cognition: metrics for technology-enhanced learning

    Get PDF
    This critical and reflective literature review examines international research published over the last decade to summarise the different kinds of measures that have been used to explore cognitive load and critiques the strengths and limitations of those focussed on the development of direct empirical approaches. Over the last 40 years, cognitive load theory has become established as one of the most successful and influential theoretical explanations of cognitive processing during learning. Despite this success, attempts to obtain direct objective measures of the theory's central theoretical construct – cognitive load – have proved elusive. This obstacle represents the most significant outstanding challenge for successfully embedding the theoretical and experimental work on cognitive load in empirical data from authentic learning situations. Progress to date on the theoretical and practical approaches to cognitive load are discussed along with the influences of individual differences on cognitive load in order to assess the prospects for the development and application of direct empirical measures of cognitive load especially in technology-rich contexts

    Anxiety and Performance: An Endogenous Learning-by-doing Model

    Get PDF
    In this article, we show that a standard economic model, the endogenous learning-by-doing model, captures several major themes from the anxiety literature in psychology. In our model, anxiety is a fully endogenous construct that can be separated naturally into its cognitive and physiological components. As such, our results are directly comparable with hypotheses and evidence from psychology. We show that anxiety can serve a motivating function, which suggests potential applications in the principal-agent literature.Diamond Paradox, price dispersion, search, strategic complementarities

    Designing IS service strategy: an information acceleration approach

    Get PDF
    Information technology-based innovation involves considerable risk that requires insight and foresight. Yet, our understanding of how managers develop the insight to support new breakthrough applications is limited and remains obscured by high levels of technical and market uncertainty. This paper applies a new experimental method based on “discrete choice analysis” and “information acceleration” to directly examine how decisions are made in a way that is behaviourally sound. The method is highly applicable to information systems researchers because it provides relative importance measures on a common scale, greater control over alternate explanations and stronger evidence of causality. The practical implications are that information acceleration reduces the levels of uncertainty and generates a more accurate rationale for IS service strategy decisions

    Using Noninvasive Brain Measurement to Explore the Psychological Effects of Computer Malfunctions on Users during Human-Computer Interactions

    Full text link
    In today’s technologically driven world, there is a need to better understand the ways that common computer malfunctions affect computer users. These malfunctions may have measurable influences on computer user’s cognitive, emotional, and behavioral responses. An experiment was conducted where participants conducted a series of web search tasks while wearing functional nearinfrared spectroscopy (fNIRS) and galvanic skin response sensors. Two computer malfunctions were introduced during the sessions which had the potential to influence correlates of user trust and suspicion. Surveys were given after each session to measure user’s perceived emotional state, cognitive load, and perceived trust. Results suggest that fNIRS can be used to measure the different cognitive and emotional responses associated with computer malfunctions. These cognitive and emotional changes were correlated with users’ self-report levels of suspicion and trust, and they in turn suggest future work that further explores the capability of fNIRS for the measurement of user experience during human-computer interactions
    corecore