4,556 research outputs found

    Uncertainty propagation in neural network enabled multi-channel optimisation

    Get PDF
    Multi-channel optimisation relies on accurate channel state information (CSI) estimation. Error distributions in CSI can propagate through optimisation algorithms to cause undesirable uncertainty in the solution space. The transformation of uncertainty distributions differs between classic heuristic and Neural Network (NN) algorithms. Here, we investigate how CSI uncertainty transforms from an additive Gaussian error in CSI into different power allocation distributions in a multi-channel system. We offer theoretical insight into the uncertainty propagation for both Water-filling (WF) power allocation in comparison to diverse NN algorithms. We use the Kullback-Leibler divergence to quantify uncertainty deviation from the trusted WF algorithm and offer some insight into the role of NN structure and activation functions on the uncertainty divergence, where we found that the activation function choice is more important than the size of the neural networ

    Machine learning for optical fiber communication systems: An introduction and overview

    Get PDF
    Optical networks generate a vast amount of diagnostic, control and performance monitoring data. When information is extracted from this data, reconfigurable network elements and reconfigurable transceivers allow the network to adapt both to changes in the physical infrastructure but also changing traffic conditions. Machine learning is emerging as a disruptive technology for extracting useful information from this raw data to enable enhanced planning, monitoring and dynamic control. We provide a survey of the recent literature and highlight numerous promising avenues for machine learning applied to optical networks, including explainable machine learning, digital twins and approaches in which we embed our knowledge into the machine learning such as physics-informed machine learning for the physical layer and graph-based machine learning for the networking layer

    Deep Learning Designs for Physical Layer Communications

    Get PDF
    Wireless communication systems and their underlying technologies have undergone unprecedented advances over the last two decades to assuage the ever-increasing demands for various applications and emerging technologies. However, the traditional signal processing schemes and algorithms for wireless communications cannot handle the upsurging complexity associated with fifth-generation (5G) and beyond communication systems due to network expansion, new emerging technologies, high data rate, and the ever-increasing demands for low latency. This thesis extends the traditional downlink transmission schemes to deep learning-based precoding and detection techniques that are hardware-efficient and of lower complexity than the current state-of-the-art. The thesis focuses on: precoding/beamforming in massive multiple-inputs-multiple-outputs (MIMO), signal detection and lightweight neural network (NN) architectures for precoder and decoder designs. We introduce a learning-based precoder design via constructive interference (CI) that performs the precoding on a symbol-by-symbol basis. Instead of conventionally training a NN without considering the specifics of the optimisation objective, we unfold a power minimisation symbol level precoding (SLP) formulation based on the interior-point-method (IPM) proximal ‘log’ barrier function. Furthermore, we propose a concept of NN compression, where the weights are quantised to lower numerical precision formats based on binary and ternary quantisations. We further introduce a stochastic quantisation technique, where parts of the NN weight matrix are quantised while the remaining is not. Finally, we propose a systematic complexity scaling of deep neural network (DNN) based MIMO detectors. The model uses a fraction of the DNN inputs by scaling their values through weights that follow monotonically non-increasing functions. Furthermore, we investigate performance complexity tradeoffs via regularisation constraints on the layer weights such that, at inference, parts of network layers can be removed with minimal impact on the detection accuracy. Simulation results show that our proposed learning-based techniques offer better complexity-vs-BER (bit-error-rate) and complexity-vs-transmit power performances compared to the state-of-the-art MIMO detection and precoding techniques

    Robust Controller for Delays and Packet Dropout Avoidance in Solar-Power Wireless Network

    Get PDF
    Solar Wireless Networked Control Systems (SWNCS) are a style of distributed control systems where sensors, actuators, and controllers are interconnected via a wireless communication network. This system setup has the benefit of low cost, flexibility, low weight, no wiring and simplicity of system diagnoses and maintenance. However, it also unavoidably calls some wireless network time delays and packet dropout into the design procedure. Solar lighting system offers a clean environment, therefore able to continue for a long period. SWNCS also offers multi Service infrastructure solution for both developed and undeveloped countries. The system provides wireless controller lighting, wireless communications network (WI-FI/WIMAX), CCTV surveillance, and wireless sensor for weather measurement which are all powered by solar energy

    BayesNAS: A Bayesian Approach for Neural Architecture Search

    Get PDF
    One-Shot Neural Architecture Search (NAS) is a promising method to significantly reduce search time without any separate training. It can be treated as a Network Compression problem on the architecture parameters from an over-parameterized network. However, there are two issues associated with most one-shot NAS methods. First, dependencies between a node and its predecessors and successors are often disregarded which result in improper treatment over zero operations. Second, architecture parameters pruning based on their magnitude is questionable. In this paper, we employ the classic Bayesian learning approach to alleviate these two issues by modeling architecture parameters using hierarchical automatic relevance determination (HARD) priors. Unlike other NAS methods, we train the over-parameterized network for only one epoch then update the architecture. Impressively, this enabled us to find the architecture on CIFAR-10 within only 0.2 GPU days using a single GPU. Competitive performance can be also achieved by transferring to ImageNet. As a byproduct, our approach can be applied directly to compress convolutional neural networks by enforcing structural sparsity which achieves extremely sparse networks without accuracy deterioration.Comment: International Conference on Machine Learning 201

    UQ and AI: data fusion, inverse identification, and multiscale uncertainty propagation in aerospace components

    Get PDF
    A key requirement for engineering designs is that they offer good performance across a range of uncertain conditions while exhibiting an admissibly low probability of failure. In order to design components that offer good performance across a range of uncertain conditions, it is necessary to take account of the effect of the uncertainties associated with a candidate design. Uncertainty Quantification (UQ) methods are statistical methods that may be used to quantify the effect of the uncertainties inherent in a system on its performance. This thesis expands the envelope of UQ methods for the design of aerospace components, supporting the integration of UQ methods in product development by addressing four industrial challenges. Firstly, a method for propagating uncertainty through computational models in a hierachy of scales is described that is based on probabilistic equivalence and Non-Intrusive Polynomial Chaos (NIPC). This problem is relevant to the design of aerospace components as the computational models used to evaluate candidate designs are typically multiscale. This method was then extended to develop a formulation for inverse identification, where the probability distributions for the material properties of a coupon are deduced from measurements of its response. We demonstrate how probabilistic equivalence and the Maximum Entropy Principle (MEP) may be used to leverage data from simulations with scarce experimental data- with the intention of making this stage of product design less expensive and time consuming. The third contribution of this thesis is to develop two novel meta-modelling strategies to promote the wider exploration of the design space during the conceptual design phase. Design Space Exploration (DSE) in this phase is crucial as decisions made at the early, conceptual stages of an aircraft design can restrict the range of alternative designs available at later stages in the design process, despite limited quantitative knowledge of the interaction between requirements being available at this stage. A histogram interpolation algorithm is presented that allows the designer to interactively explore the design space with a model-free formulation, while a meta-model based on Knowledge Based Neural Networks (KBaNNs) is proposed in which the outputs of a high-level, inexpensive computer code are informed by the outputs of a neural network, in this way addressing the criticism of neural networks that they are purely data-driven and operate as black boxes. The final challenge addressed by this thesis is how to iteratively improve a meta-model by expanding the dataset used to train it. Given the reliance of UQ methods on meta-models this is an important challenge. This thesis proposes an adaptive learning algorithm for Support Vector Machine (SVM) metamodels, which are used to approximate an unknown function. In particular, we apply the adaptive learning algorithm to test cases in reliability analysis.Open Acces

    Object-level dynamic SLAM

    Get PDF
    Visual Simultaneous Localisation and Mapping (SLAM) can estimate a camera's pose in an unknown environment and reconstruct an online map of it. Despite the advances in many real-time dense SLAM systems, most still assume a static environment, which is not a valid assumption in many real-world scenarios. This thesis aims to enable dense visual SLAM to run robustly in a dynamic environment, knowing where the sensor is in the environment, and, also importantly, what and where objects are in the surrounding environment for better scene understanding. The contributions in this thesis are threefold. The first one presents one of the first object-level dynamic SLAM systems that robustly track camera pose while detecting, tracking, and reconstructing all the objects in dynamic scenes. It can continuously fuse geometric, semantic, and motion information for each object into an octree-based volumetric representation. One of the challenges in tracking moving objects is that the object motion can easily break the illumination constancy assumption. In our second contribution, we address this issue by proposing a dense feature-metric alignment to robustly estimate camera and object poses. We will show how to learn dense feature maps and feature-metric uncertainties in a self-supervised way. They formulate a probabilistic feature-metric residual, which can be efficiently solved using Gauss-Newton optimisation and easily coupled with other residuals. So far, we can only reconstruct objects' geometry from the sensor data. Our third contribution further incorporates category-level shape prior to the object mapping. Conditioning on the depth measurement, the learned implicit function completes the unseen part while reconstructing the observed part accurately. It can yield better reconstruction completeness and more accurate object pose estimation. These three contributions in this thesis have advanced the state of the art in visual SLAM. We hope such object-level dynamic SLAM systems will help robots intelligently interact with the human-existing world.Open Acces
    • …
    corecore