42,108 research outputs found

    A note on many valued quantum computational logics

    Full text link
    The standard theory of quantum computation relies on the idea that the basic information quantity is represented by a superposition of elements of the canonical basis and the notion of probability naturally follows from the Born rule. In this work we consider three valued quantum computational logics. More specifically, we will focus on the Hilbert space C^3, we discuss extensions of several gates to this space and, using the notion of effect probability, we provide a characterization of its states.Comment: Pages 15, Soft Computing, 201

    Implication functions in interval-valued fuzzy set theory

    Get PDF
    Interval-valued fuzzy set theory is an extension of fuzzy set theory in which the real, but unknown, membership degree is approximated by a closed interval of possible membership degrees. Since implications on the unit interval play an important role in fuzzy set theory, several authors have extended this notion to interval-valued fuzzy set theory. This chapter gives an overview of the results pertaining to implications in interval-valued fuzzy set theory. In particular, we describe several possibilities to represent such implications using implications on the unit interval, we give a characterization of the implications in interval-valued fuzzy set theory which satisfy the Smets-Magrez axioms, we discuss the solutions of a particular distributivity equation involving strict t-norms, we extend monoidal logic to the interval-valued fuzzy case and we give a soundness and completeness theorem which is similar to the one existing for monoidal logic, and finally we discuss some other constructions of implications in interval-valued fuzzy set theory

    Interval valued (\in,\ivq)-fuzzy filters of pseudo BLBL-algebras

    Full text link
    We introduce the concept of quasi-coincidence of a fuzzy interval value with an interval valued fuzzy set. By using this new idea, we introduce the notions of interval valued (\in,\ivq)-fuzzy filters of pseudo BLBL-algebras and investigate some of their related properties. Some characterization theorems of these generalized interval valued fuzzy filters are derived. The relationship among these generalized interval valued fuzzy filters of pseudo BLBL-algebras is considered. Finally, we consider the concept of implication-based interval valued fuzzy implicative filters of pseudo BLBL-algebras, in particular, the implication operators in Lukasiewicz system of continuous-valued logic are discussed

    Interval-valued algebras and fuzzy logics

    Get PDF
    In this chapter, we present a propositional calculus for several interval-valued fuzzy logics, i.e., logics having intervals as truth values. More precisely, the truth values are preferably subintervals of the unit interval. The idea behind it is that such an interval can model imprecise information. To compute the truth values of ā€˜p implies qā€™ and ā€˜p and qā€™, given the truth values of p and q, we use operations from residuated lattices. This truth-functional approach is similar to the methods developed for the well-studied fuzzy logics. Although the interpretation of the intervals as truth values expressing some kind of imprecision is a bit problematic, the purely mathematical study of the properties of interval-valued fuzzy logics and their algebraic semantics can be done without any problem. This study is the focus of this chapter

    Quantum Reality and Measurement: A Quantum Logical Approach

    Full text link
    The recently established universal uncertainty principle revealed that two nowhere commuting observables can be measured simultaneously in some state, whereas they have no joint probability distribution in any state. Thus, one measuring apparatus can simultaneously measure two observables that have no simultaneous reality. In order to reconcile this discrepancy, an approach based on quantum logic is proposed to establish the relation between quantum reality and measurement. We provide a language speaking of values of observables independent of measurement based on quantum logic and we construct in this language the state-dependent notions of joint determinateness, value identity, and simultaneous measurability. This naturally provides a contextual interpretation, in which we can safely claim such a statement that one measuring apparatus measures one observable in one context and simultaneously it measures another nowhere commuting observable in another incompatible context.Comment: 16 pages, Latex. Presented at the Conference "Quantum Theory: Reconsideration of Foundations, 5 (QTRF5)," Vaxjo, Sweden, 15 June 2009. To appear in Foundations of Physics
    • ā€¦
    corecore