71 research outputs found

    Uncertainty modeling and interpretability in convolutional neural networks for polyp segmentation

    Get PDF
    Convolutional Neural Networks (CNNs) are propelling advances in a range of different computer vision tasks such as object detection and object segmentation. Their success has motivated research in applications of such models for medical image analysis. If CNN-based models are to be helpful in a medical context, they need to be precise, interpretable, and uncertainty in predictions must be well understood. In this paper, we develop and evaluate recent advances in uncertainty estimation and model interpretability in the context of semantic segmentation of polyps from colonoscopy images. We evaluate and enhance several architectures of Fully Convolutional Networks (FCNs) for semantic segmentation of colorectal polyps and provide a comparison between these models. Our highest performing model achieves a 76.06% mean IOU accuracy on the EndoScene dataset, a considerable improvement over the previous state-of-the-art

    Uncertainty, interpretability and dataset limitations in Deep Learning

    Full text link
    [eng] Deep Learning (DL) has gained traction in the last years thanks to the exponential increase in compute power. New techniques and methods are published at a daily basis, and records are being set across multiple disciplines. Undeniably, DL has brought a revolution to the machine learning field and to our lives. However, not everything has been resolved and some considerations must be taken into account. For instance, obtaining uncertainty measures and bounds is still an open problem. Models should be able to capture and express the confidence they have in their decisions, and Artificial Neural Networks (ANN) are known to lack in this regard. Be it through out of distribution samples, adversarial attacks, or simply unrelated or nonsensical inputs, ANN models demonstrate an unfounded and incorrect tendency to still output high probabilities. Likewise, interpretability remains an unresolved question. Some fields not only need but rely on being able to provide human interpretations of the thought process of models. ANNs, and specially deep models trained with DL, are hard to reason about. Last but not least, there is a tendency that indicates that models are getting deeper and more complex. At the same time, to cope with the increasing number of parameters, datasets are required to be of higher quality and, usually, larger. Not all research, and even less real world applications, can keep with the increasing demands. Therefore, taking into account the previous issues, the main aim of this thesis is to provide methods and frameworks to tackle each of them. These approaches should be applicable to any suitable field and dataset, and are employed with real world datasets as proof of concept. First, we propose a method that provides interpretability with respect to the results through uncertainty measures. The model in question is capable of reasoning about the uncertainty inherent in data and leverages that information to progressively refine its outputs. In particular, the method is applied to land cover segmentation, a classification task that aims to assign a type of land to each pixel in satellite images. The dataset and application serve to prove that the final uncertainty bound enables the end-user to reason about the possible errors in the segmentation result. Second, Recurrent Neural Networks are used as a method to create robust models towards lacking datasets, both in terms of size and class balance. We apply them to two different fields, road extraction in satellite images and Wireless Capsule Endoscopy (WCE). The former demonstrates that contextual information in the temporal axis of data can be used to create models that achieve comparable results to state-of-the-art while being less complex. The latter, in turn, proves that contextual information for polyp detection can be crucial to obtain models that generalize better and obtain higher performance. Last, we propose two methods to leverage unlabeled data in the model creation process. Often datasets are easier to obtain than to label, which results in many wasted opportunities with traditional classification approaches. Our approaches based on self-supervised learning result in a novel contrastive loss that is capable of extracting meaningful information out of pseudo-labeled data. Applying both methods to WCE data proves that the extracted inherent knowledge creates models that perform better in extremely unbalanced datasets and with lack of data. To summarize, this thesis demonstrates potential solutions to obtain uncertainty bounds, provide reasonable explanations of the outputs, and to combat lack of data or unbalanced datasets. Overall, the presented methods have a positive impact on the DL field and could have a real and tangible effect for the society.[cat] És innegable que el Deep Learning ha causat una revolució en molts aspectes no solament de l’aprenentatge automàtic però també de les nostres vides diàries. Tot i així, encara queden aspectes a millorar. Les xarxes neuronals tenen problemes per estimar la seva confiança en les prediccions, i sovint reporten probabilitats altes en casos que no tenen relació amb el model o que directament no tenen sentit. De la mateixa forma, interpretar els resultats d’un model profund i complex resulta una tasca extremadament complicada. Aquests mateixos models, cada cop amb més paràmetres i més potents, requereixen també de dades més ben etiquetades i més completes. Tenint en compte aquestes limitacions, l’objectiu principal és el de buscar mètodes i algoritmes per trobar-ne solució. Primerament, es proposa la creació d’un mètode capaç d’obtenir incertesa en imatges satèl·lit i d’utilitzar-la per crear models més robustos i resultats interpretables. En segon lloc, s’utilitzen Recurrent Neural Networks (RNN) per combatre la falta de dades mitjançant l’obtenció d’informació contextual de dades temporals. Aquestes s’apliquen per l’extracció de carreteres d’imatges satèl·lit i per la classificació de pòlips en imatges obtingudes amb Wireless Capsule Endoscopy (WCE). Finalment, es plantegen dos mètodes per tractar amb la falta de dades etiquetades i desbalancejos en les classes amb l’ús de Self-supervised Learning (SSL). Seqüències no etiquetades d’imatges d’intestins s’incorporen en el models en una fase prèvia a la classificació tradicional. Aquesta tesi demostra que les solucions proposades per obtenir mesures d’incertesa són efectives per donar explicacions raonables i interpretables sobre els resultats. Igualment, es prova que el context en dades de caràcter temporal, obtingut amb RNNs, serveix per obtenir models més simples que poden arribar a solucionar els problemes derivats de la falta de dades. Per últim, es mostra que SSL serveix per combatre de forma efectiva els problemes de generalització degut a dades no balancejades en diversos dominis de WCE. Concloem que aquesta tesi presenta mètodes amb un impacte real en diversos aspectes de DL a la vegada que demostra la capacitat de tenir un impacte positiu en la societat

    Rethinking the transfer learning for FCN based polyp segmentation in colonoscopy

    Get PDF
    Besides the complex nature of colonoscopy frames with intrinsic frame formation artefacts such as light reflections and the diversity of polyp types/shapes, the publicly available polyp segmentation training datasets are limited, small and imbalanced. In this case, the automated polyp segmentation using a deep neural network remains an open challenge due to the overfitting of training on small datasets. We proposed a simple yet effective polyp segmentation pipeline that couples the segmentation (FCN) and classification (CNN) tasks. We find the effectiveness of interactive weight transfer between dense and coarse vision tasks that mitigates the overfitting in learning. And It motivates us to design a new training scheme within our segmentation pipeline. Our method is evaluated on CVC-EndoSceneStill and Kvasir-SEG datasets. It achieves 4.34% and 5.70% Polyp-IoU improvements compared to the state-of-the-art methods on the EndoSceneStill and Kvasir-SEG datasets, respectively.Comment: 11 pages, 10 figures, submit versio

    Supervised cnn strategies for optical image segmentation and classification in interventional medicine

    Get PDF
    The analysis of interventional images is a topic of high interest for the medical-image analysis community. Such an analysis may provide interventional-medicine professionals with both decision support and context awareness, with the final goal of improving patient safety. The aim of this chapter is to give an overview of some of the most recent approaches (up to 2018) in the field, with a focus on Convolutional Neural Networks (CNNs) for both segmentation and classification tasks. For each approach, summary tables are presented reporting the used dataset, involved anatomical region and achieved performance. Benefits and disadvantages of each approach are highlighted and discussed. Available datasets for algorithm training and testing and commonly used performance metrics are summarized to offer a source of information for researchers that are approaching the field of interventional-image analysis. The advancements in deep learning for medical-image analysis are involving more and more the interventional-medicine field. However, these advancements are undeniably slower than in other fields (e.g. preoperative-image analysis) and considerable work still needs to be done in order to provide clinicians with all possible support during interventional-medicine procedures

    Algorithms and Applications of Novel Capsule Networks

    Get PDF
    Convolutional neural networks, despite their profound impact in countless domains, suffer from significant shortcomings. Linearly-combined scalar feature representations and max pooling operations lead to spatial ambiguities and a lack of robustness to pose variations. Capsule networks can potentially alleviate these issues by storing and routing the pose information of extracted features through their architectures, seeking agreement between the lower-level predictions of higher-level poses at each layer. In this dissertation, we make several key contributions to advance the algorithms of capsule networks in segmentation and classification applications. We create the first ever capsule-based segmentation network in the literature, SegCaps, by introducing a novel locally-constrained dynamic routing algorithm, transformation matrix sharing, the concept of a deconvolutional capsule, extension of the reconstruction regularization to segmentation, and a new encoder-decoder capsule architecture. Following this, we design a capsule-based diagnosis network, D-Caps, which builds off SegCaps and introduces a novel capsule-average pooling technique to handle to larger medical imaging data. Finally, we design an explainable capsule network, X-Caps, which encodes high-level visual object attributes within its capsules by utilizing a multi-task framework and a novel routing sigmoid function which independently routes information from child capsules to parents. Predictions come with human-level explanations, via object attributes, and a confidence score, by training our network directly on the distribution of expert labels, modeling inter-observer agreement and punishing over/under confidence during training. This body of work constitutes significant algorithmic advances to the application of capsule networks, especially in real-world biomedical imaging data

    Deep learning to find colorectal polyps in colonoscopy: A systematic literature review

    Get PDF
    Colorectal cancer has a great incidence rate worldwide, but its early detection significantly increases the survival rate. Colonoscopy is the gold standard procedure for diagnosis and removal of colorectal lesions with potential to evolve into cancer and computer-aided detection systems can help gastroenterologists to increase the adenoma detection rate, one of the main indicators for colonoscopy quality and predictor for colorectal cancer prevention. The recent success of deep learning approaches in computer vision has also reached this field and has boosted the number of proposed methods for polyp detection, localization and segmentation. Through a systematic search, 35 works have been retrieved. The current systematic review provides an analysis of these methods, stating advantages and disadvantages for the different categories used; comments seven publicly available datasets of colonoscopy images; analyses the metrics used for reporting and identifies future challenges and recommendations. Convolutional neural networks are the most used architecture together with an important presence of data augmentation strategies, mainly based on image transformations and the use of patches. End-to-end methods are preferred over hybrid methods, with a rising tendency. As for detection and localization tasks, the most used metric for reporting is the recall, while Intersection over Union is highly used in segmentation. One of the major concerns is the difficulty for a fair comparison and reproducibility of methods. Even despite the organization of challenges, there is still a need for a common validation framework based on a large, annotated and publicly available database, which also includes the most convenient metrics to report results. Finally, it is also important to highlight that efforts should be focused in the future on proving the clinical value of the deep learning based methods, by increasing the adenoma detection rate.This work was partially supported by PICCOLO project. This project has received funding from the European Union's Horizon2020 Research and Innovation Programme under grant agreement No. 732111. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein. The authors would also like to thank Dr. Federico Soria for his support on this manuscript and Dr. José Carlos Marín, from Hospital 12 de Octubre, and Dr. Ángel Calderón and Dr. Francisco Polo, from Hospital de Basurto, for the images in Fig. 4

    Eigenloss: Combined PCA-Based Loss Function for Polyp Segmentation

    Get PDF
    Colorectal cancer is one of the leading cancer death causes worldwide, but its early diagnosis highly improves the survival rates. The success of deep learning has also benefited this clinical field. When training a deep learning model, it is optimized based on the selected loss function. In this work, we consider two networks (U-Net and LinkNet) and two backbones (VGG-16 and Densnet121). We analyzed the influence of seven loss functions and used a principal component analysis (PCA) to determine whether the PCA-based decomposition allows for the defining of the coefficients of a non-redundant primal loss function that can outperform the individual loss functions and different linear combinations. The eigenloss is defined as a linear combination of the individual losses using the elements of the eigenvector as coefficients. Empirical results show that the proposed eigenloss improves the general performance of individual loss functions and outperforms other linear combinations when Linknet is used, showing potential for its application in polyp segmentation problems

    PICCOLO White-Light and Narrow-Band Imaging Colonoscopic Dataset: A Performance Comparative of Models and Datasets

    Get PDF
    Colorectal cancer is one of the world leading death causes. Fortunately, an early diagnosis allows for e_ective treatment, increasing the survival rate. Deep learning techniques have shown their utility for increasing the adenoma detection rate at colonoscopy, but a dataset is usually required so the model can automatically learn features that characterize the polyps. In this work, we present the PICCOLO dataset, that comprises 3433 manually annotated images (2131 white-light images 1302 narrow-band images), originated from 76 lesions from 40 patients, which are distributed into training (2203), validation (897) and test (333) sets assuring patient independence between sets. Furthermore, clinical metadata are also provided for each lesion. Four di_erent models, obtained by combining two backbones and two encoder–decoder architectures, are trained with the PICCOLO dataset and other two publicly available datasets for comparison. Results are provided for the test set of each dataset. Models trained with the PICCOLO dataset have a better generalization capacity, as they perform more uniformly along test sets of all datasets, rather than obtaining the best results for its own test set. This dataset is available at the website of the Basque Biobank, so it is expected that it will contribute to the further development of deep learning methods for polyp detection, localisation and classification, which would eventually result in a better and earlier diagnosis of colorectal cancer, hence improving patient outcomes.This work was partially supported by PICCOLO project. This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 732111. Furthermore, this publication has also been partially supported by GR18199 from Consejería de Economía, Ciencia y Agenda Digital of Junta de Extremadura (co-funded by European Regional Development Fund–ERDF. “A way to make Europe”/ “Investing in your future”. This work has been performed by the ICTS “NANBIOSIS” at the Jesús Usón Minimally Invasive Surgery Centre
    corecore