5,765 research outputs found

    A Bayesian Network View on Acoustic Model-Based Techniques for Robust Speech Recognition

    Full text link
    This article provides a unifying Bayesian network view on various approaches for acoustic model adaptation, missing feature, and uncertainty decoding that are well-known in the literature of robust automatic speech recognition. The representatives of these classes can often be deduced from a Bayesian network that extends the conventional hidden Markov models used in speech recognition. These extensions, in turn, can in many cases be motivated from an underlying observation model that relates clean and distorted feature vectors. By converting the observation models into a Bayesian network representation, we formulate the corresponding compensation rules leading to a unified view on known derivations as well as to new formulations for certain approaches. The generic Bayesian perspective provided in this contribution thus highlights structural differences and similarities between the analyzed approaches

    Bayesian compressive sensing framework for spectrum reconstruction in Rayleigh fading channels

    Get PDF
    Compressive sensing (CS) is a novel digital signal processing technique that has found great interest in many applications including communication theory and wireless communications. In wireless communications, CS is particularly suitable for its application in the area of spectrum sensing for cognitive radios, where the complete spectrum under observation, with many spectral holes, can be modeled as a sparse wide-band signal in the frequency domain. Considering the initial works performed to exploit the benefits of Bayesian CS in spectrum sensing, the fading characteristic of wireless communications has not been considered yet to a great extent, although it is an inherent feature for all sorts of wireless communications and it must be considered for the design of any practically viable wireless system. In this paper, we extend the Bayesian CS framework for the recovery of a sparse signal, whose nonzero coefficients follow a Rayleigh distribution. It is then demonstrated via simulations that mean square error significantly improves when appropriate prior distribution is used for the faded signal coefficients and thus, in turns, the spectrum reconstruction improves. Different parameters of the system model, e.g., sparsity level and number of measurements, are then varied to show the consistency of the results for different cases

    Perception of categories: from coding efficiency to reaction times

    Full text link
    Reaction-times in perceptual tasks are the subject of many experimental and theoretical studies. With the neural decision making process as main focus, most of these works concern discrete (typically binary) choice tasks, implying the identification of the stimulus as an exemplar of a category. Here we address issues specific to the perception of categories (e.g. vowels, familiar faces, ...), making a clear distinction between identifying a category (an element of a discrete set) and estimating a continuous parameter (such as a direction). We exhibit a link between optimal Bayesian decoding and coding efficiency, the latter being measured by the mutual information between the discrete category set and the neural activity. We characterize the properties of the best estimator of the likelihood of the category, when this estimator takes its inputs from a large population of stimulus-specific coding cells. Adopting the diffusion-to-bound approach to model the decisional process, this allows to relate analytically the bias and variance of the diffusion process underlying decision making to macroscopic quantities that are behaviorally measurable. A major consequence is the existence of a quantitative link between reaction times and discrimination accuracy. The resulting analytical expression of mean reaction times during an identification task accounts for empirical facts, both qualitatively (e.g. more time is needed to identify a category from a stimulus at the boundary compared to a stimulus lying within a category), and quantitatively (working on published experimental data on phoneme identification tasks)

    Exact Bayesian curve fitting and signal segmentation.

    Get PDF
    We consider regression models where the underlying functional relationship between the response and the explanatory variable is modeled as independent linear regressions on disjoint segments. We present an algorithm for perfect simulation from the posterior distribution of such a model, even allowing for an unknown number of segments and an unknown model order for the linear regressions within each segment. The algorithm is simple, can scale well to large data sets, and avoids the problem of diagnosing convergence that is present with Monte Carlo Markov Chain (MCMC) approaches to this problem. We demonstrate our algorithm on standard denoising problems, on a piecewise constant AR model, and on a speech segmentation problem

    DeepCoder: Semi-parametric Variational Autoencoders for Automatic Facial Action Coding

    Full text link
    Human face exhibits an inherent hierarchy in its representations (i.e., holistic facial expressions can be encoded via a set of facial action units (AUs) and their intensity). Variational (deep) auto-encoders (VAE) have shown great results in unsupervised extraction of hierarchical latent representations from large amounts of image data, while being robust to noise and other undesired artifacts. Potentially, this makes VAEs a suitable approach for learning facial features for AU intensity estimation. Yet, most existing VAE-based methods apply classifiers learned separately from the encoded features. By contrast, the non-parametric (probabilistic) approaches, such as Gaussian Processes (GPs), typically outperform their parametric counterparts, but cannot deal easily with large amounts of data. To this end, we propose a novel VAE semi-parametric modeling framework, named DeepCoder, which combines the modeling power of parametric (convolutional) and nonparametric (ordinal GPs) VAEs, for joint learning of (1) latent representations at multiple levels in a task hierarchy1, and (2) classification of multiple ordinal outputs. We show on benchmark datasets for AU intensity estimation that the proposed DeepCoder outperforms the state-of-the-art approaches, and related VAEs and deep learning models.Comment: ICCV 2017 - accepte

    Advances in Learning Bayesian Networks of Bounded Treewidth

    Full text link
    This work presents novel algorithms for learning Bayesian network structures with bounded treewidth. Both exact and approximate methods are developed. The exact method combines mixed-integer linear programming formulations for structure learning and treewidth computation. The approximate method consists in uniformly sampling kk-trees (maximal graphs of treewidth kk), and subsequently selecting, exactly or approximately, the best structure whose moral graph is a subgraph of that kk-tree. Some properties of these methods are discussed and proven. The approaches are empirically compared to each other and to a state-of-the-art method for learning bounded treewidth structures on a collection of public data sets with up to 100 variables. The experiments show that our exact algorithm outperforms the state of the art, and that the approximate approach is fairly accurate.Comment: 23 pages, 2 figures, 3 table
    corecore