1,660 research outputs found

    Estimating the water quality condition of river and lake water in the Midwestern United States from its spectral characteristics

    Get PDF
    This study focuses on developing/calibrating remote sensing algorithms for water quality retrieval in Midwestern rivers and lakes. In the first part of this study, the spectral measurements collected using a hand-held spectrometer as well as water quality observations for the Wabash River and its tributary the Tippecanoe River in Indiana were used to develop empirical models for the retrieval of chlorophyll (chl) and total suspended solids (TSS). A method for removing sky and sun glint from field spectra for turbid inland waters was developed and tested. Empirical models were then developed using a subset of the field measurements with the rest for model validation. Spectral characteristics indicative of waters dominated by different inherent optical properties (IOPs) were identified and used as the basis of selecting bands for empirical model development. The second part of this study focuses on the calibration of an existing bio-geo-optical model for studying the spatial variability of chl, non-algal particles (NAP), and colored dissolved organic matter (CDOM) in episodic St. Joseph River plumes in southern Lake Michigan. One set of EO-1 Hyperion imagery and one set of boat-based spectrometer measurements were successfully acquired to capture episodic plume events. Coincident water quality measurements were also collected during these plume events. A database of inherent optical properties (IOPs) measurements and spectral signatures was generated and used to calibrate a bio-geo-optical model. Finally, a comprehensive spectral-biogeochemical database was developed for the Wabash River and its tributaries in Indiana by conducting field sampling of the rivers using a boat platform over different hydrologic conditions during summer 2014. In addition to the various spectral measurements taken by a handheld field spectrometer, this database includes corresponding in situ measurements of water quality parameters (chl, NAP, and CDOM), nutrients (TN, TP, dissolved organic carbon (DOC)), water-column IOPs, water depths, substrate types and bottom reflectance spectra. The temporal variability of water quality parameters and nutrients in the rivers was analyzed and studied. A look-up table (LUT) based spectrum matching methodology was applied to the collected observations in the database to simplify the retrieval of water quality parameters and make the data accessible to a wider range of end users. It was found that the ratio of the reflectance peak at the red edge (704 nm) with the local minimum caused by chlorophyll absorption at 677 nm was a strong predictor of chl concentrations (coefficient of determination ( R2) = 0.95). The reflectance peak at 704 nm was also a good predictor for TSS estimation (R2 = 0.75). In addition, we also found that reflectance within the NIR wavelengths (700–890 nm) all showed strong correlation (0.85–0.91) with TSS concentrations and generated robust models. Field measured concentrations of NAP and CDOM at 67% of the sampled sites in the St Joseph River plume fall within one standard deviation of the retrieved means using the spectrometer measurements and the calibrated bio-geo-optical model. The percentage of sites within one standard deviation (88%) is higher for the estimation of chl concentrations. Despite the dynamic nature of the observed plume and the time lag during field sampling, 77% of sampled sites were found to have field measured chl and NAP concentrations falling within one standard deviation of the Hyperion derived values. The spatial maps of water quality parameters generated from the Hyperion image provided a synoptic view of water quality conditions. Analysis highlights that concentrations of NAP, chl, and CDOM were more than three times higher in conjunction with river outflow and inside the river plumes than in ambient water. It is concluded that the storm-initiated plume is a significant source of sediments, carbon and chl to Lake Michigan. The temporal variability of water quality parameters and nutrients in the Wabash River was closely associated with hydrologic conditions, while no significant correlations existed between these parameters and streamflow for the Tippecanoe River, probably due to the two upstream reservoirs. The poor relationship between CDOM and DOC indicates that most DOC in the rivers was from human sources such as wastewater. It was also found that the source of water (surface runoff or combined sewer overflows (CSO)) to a river, water temperature, and nutrients are important factors controlling instream concentrations of phytoplankton. The LUT retrieved chl and NAP concentrations were in good agreement with field measurements with slopes close to 1.0. The average estimation errors for NAP and chl were within 4.1% and 37.7%, respectively, of independently obtained lab measurements. The CDOM levels were not well estimated and the LUT retrievals for CDOM showed large variability, probably due to the small data range collected in this study and the insensitivity of remote sensing reflectance, Rrs, to CDOM change. (Abstract shortened by ProQuest.

    Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia

    Get PDF
    The Hyperspectral Imager for the Coastal Ocean (HICO) aboard the International Space Station has offered for the first time a dedicated space-borne hyperspectral sensor specifically designed for remote sensing of the coastal environment. However, several processing steps are required to convert calibrated top-of-atmosphere radiances to the desired geophysical parameter(s). These steps add various amounts of uncertainty that can cumulatively render the geophysical parameter imprecise and potentially unusable if the objective is to analyze trends and/or seasonal variability. This research presented here has focused on: (1) atmospheric correction of HICO imagery; (2) retrieval of bathymetry using an improved implementation of a shallow water inversion algorithm; (3) propagation of uncertainty due to environmental noise through the bathymetry retrieval process; (4) issues relating to consistent geo-location of HICO imagery necessary for time series analysis, and; (5) tide height corrections of the retrieved bathymetric dataset. The underlying question of whether a temporal change in depth is detectable above uncertainty is also addressed. To this end, nine HICO images spanning November 2011 to August 2012, over the Shark Bay World Heritage Area, Western Australia, were examined. The results presented indicate that precision of the bathymetric retrievals is dependent on the shallow water inversion algorithm used. Within this study, an average of 70% of pixels for the entire HICO-derived bathymetry dataset achieved a relative uncertainty of less than ± 20%. A per-pixel t-test analysis between derived bathymetry images at successive timestamps revealed observable changes in depth to as low as 0.4 m. However, the present geolocation accuracy of HICO is relatively poor and needs further improvements before extensive time series analysis can be performed

    A new method to determine multi-angular reflectance factor from lightweight multispectral cameras with sky sensor in a target-less workflow applicable to UAV

    Full text link
    A new physically based method to estimate hemispheric-directional reflectance factor (HDRF) from lightweight multispectral cameras that have a downwelling irradiance sensor is presented. It combines radiometry with photogrammetric computer vision to derive geometrically and radiometrically accurate data purely from the images, without requiring reflectance targets or any other additional information apart from the imagery. The sky sensor orientation is initially computed using photogrammetric computer vision and revised with a non-linear regression comprising radiometric and photogrammetry-derived information. It works for both clear sky and overcast conditions. A ground-based test acquisition of a Spectralon target observed from different viewing directions and with different sun positions using a typical multispectral sensor configuration for clear sky and overcast showed that both the overall value and the directionality of the reflectance factor as reported in the literature were well retrieved. An RMSE of 3% for clear sky and up to 5% for overcast sky was observed

    Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping

    Get PDF
    The continuously increasing demand of accurate quantitative high quality information on land surface properties will be faced by a new generation of environmental Earth observation (EO) missions. One current example, associated with a high potential to contribute to those demands, is the multi-spectral ESA Sentinel-2 (S2) system. The present study focuses on the evaluation of spectral information content needed for crop leaf area index (LAI) mapping in view of the future sensors. Data from a field campaign were used to determine the optimal spectral sampling from available S2 bands applying inversion of a radiative transfer model (PROSAIL) with look-up table (LUT) and artificial neural network (ANN) approaches. Overall LAI estimation performance of the proposed LUT approach (LUTN₅₀) was comparable in terms of retrieval performances with a tested and approved ANN method. Employing seven- and eight-band combinations, the LUTN₅₀ approach obtained LAI RMSE of 0.53 and normalized LAI RMSE of 0.12, which was comparable to the results of the ANN. However, the LUTN50 method showed a higher robustness and insensitivity to different band settings. Most frequently selected wavebands were located in near infrared and red edge spectral regions. In conclusion, our results emphasize the potential benefits of the Sentinel-2 mission for agricultural applications

    고해상도 초분광영상을 활용한 하천 부유사농도 계측기법 개발

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 건설환경공학부, 2022. 8. 서일원.기존의 하천 부유사 농도 계측은 샘플링 기반 직접계측 방식에 의존하여 시공간적 고해상도 자료 취득이 어려운 실정이다. 이러한 한계점을 극복하기 위해 최근 위성과 드론을 활용하여 촬영된 다분광 혹은 초분광 영상을 통해 고해상도의 부유사농도 시공간분포를 계측하는 기법에 대한 연구가 활발히 진행되고 있다. 하지만, 다른 하천 물리량 계측에 비해 부유사 계측 연구는 하천에 따라 부유사가 다양하게 분포하고 다른 부유물질 혹은 하상에 의한 바닥 반사의 영향 때문에 분광 자료를 통해 정확한 부유사농도 분포를 재현하기 어려운 실정이다. 특히, 부유사 분광 특성에 영향을 미치는 입도분포, 광물특성, 침강성 등이 하천에 따라 강한 지역성을 나타내기에 이러한 요인에서 야기되는 분광다양성으로 인해 특정 시기와 지역에만 적합한 원격탐사 기반 계측 모형들이 개발되어 왔다. 본 연구에서는 이러한 분광다양성을 반영하여 다양한 하천 및 유사 조건에서 적용 가능한 고해상도 초분광영상을 활용한 하천 부유사농도 계측방법을 개발하기 위해 초분광 군집화 기법과 다양한 파장대의 분광 밴드를 학습할 수 있는 기계학습 회귀 모형을 결합하여 CMR-OV라는 방법론을 제시하였다. CMR-OV 개발 및 검증은 1) 실험적 연구를 통한 하천 부유사 분광 특성의 주요 교란 요인 분석, 2) 최적 회귀모형 선정 및 초분광 클러스터링과의 결합, 3) 현장적용성 평가의 과정을 거쳐 수행되었다. 실험적 연구에서는 우선 실내 실험실에서 횡방향 혼합기를 활용하여 바닥 반사를 제거하고 완전 혼합된 상태에서 부유사의 고유 초분광 스펙트럼 자료를 수집하였다. 이를 바탕으로 실제 하천과 유사한 조건의 실규모 옥외 수로 실험에서 다양한 유사 특성(입도 및 광물)과 하상 특성(식생 및 모래)에 대한 초분광 자료를 수집하여 고유 초분광 스펙트럼과 비교하였다. 그 결과, 부유사의 분광 특성은 유사의 종류 및 입도에 따라 농도 증가에 따른 초분광 스펙트럼의 반사율 변화가 상이하게 나타났다. 또한, 1 m 이하의 얕은 수심 조건에서는 바닥 반사의 영향으로 하상 종류에 따라 초분광 스펙트럼의 개형이 크게 변화하였으며, 고농도의 부유사가 분포할 때도 바닥 반사가 크게 영향을 미치는 것을 확인하였다. 이러한 분광다양성이 반영된 부유사농도와 초분광 자료의 관계를 구축하기 위하여 기계학습 기반 랜덤포레스트 회귀 모형과 가우시안 혼합 모형 기반 초분광 군집 기법을 결합한 CMR-OV를 적용한 결과, 기존 연구들에서 주로 활용된 밴드비 기반의 모형과 단일 기계학습모형에 비해 정확도가 크게 향상하였다. 특히, 기존 최적 밴드비 분석 (OBRA) 방법은 비선형성을 고려해도 좁은 영역의 파장대만을 고려하는 한계점으로 인해 분광다양성을 반영하지 못하는 것으로 밝혀졌다. 하지만, CMR-OV는 폭 넓은 파장대 영역을 고려함과 동시에 높은 정확도를 산출하였다. 최종적으로 CMR-OV를 황강의 직선구간 및 사행구간과 낙동강과 황강의 합류부에 적용하여 현장검증을 수행한 결과, 기존 모형 대비 정확도와 부유사 농도 맵핑의 정밀성에서 큰 개선이 있었으며, 비학습지역에서도 높은 정확도를 산출하였다. 특히, 하천 합류부에서는 초분광 군집을 통해 두 하천 흐름의 경계층을 명확히 구별하였으며, 이를 바탕으로 지류와 본류에 대해 각각 분리된 회귀모형을 구축하여 복잡한 합류부 근역 경계층에서의 부유사 분포를 보다 정확하게 재현하였다. 또한, 나아가서 재현된 고해상도의 부유사 공간분포를 바탕으로 혼합도를 산정한 결과, 기존 점계측 대비 상세하게 부유사 혼합에 대한 정량적 평가가 가능한 것으로 나타났다. 따라서, 본 연구에서 개발한 초분광영상 기반 부유사 계측 기술을 통해 추후 하천 조사 및 관리 실무의 정확성 및 효율성을 크게 증진할 수 있을 것으로 기대된다.The conventional measurement method of suspended sediment concentration (SSC) in the riverine system is labor-intensive and time-consuming since it has been conducted using the sampling-based direct measurement method. For this reason, it is challenging to collect high-resolution datasets of SSC in rivers. In order to overcome this limitation, remote sensing-based techniques using multi- or hyper-spectral images from satellites or UAVs have been recently carried out to obtain high-resolution SSC distributions in water environments. However, suspended sediment in rivers is more dynamic and spatially heterogeneous than those in other fields. Moreover, the sediment and streambed properties have strong regional characteristics depending on the river type; thus, only models suitable for a specific period and region have been developed owing to the increased spectral variability of the water arising from various types of suspended matter in the water and the heterogeneous streambed properties. Therefore, to overcome the limitations of the existing monitoring system, this study proposed a robust hyperspectral imagery-based SSC measurement method, termed cluster-based machine learning regression with optical variability (CMR-OV). This method dealt with the spectral variability problem by combining hyperspectral clustering and machine learning regression with the Gaussian mixture model (GMM) and Random forest (RF) regression. The hyperspectral clustering separated the complex dataset into several homogeneous datasets according to spectral characteristics. Then, the machine learning regressors corresponding to clustered datasets were built to construct the relationship between the hyperspectral spectrum and SSC. The development and validation of the proposed method were carried out through the following processes: 1) analysis of confounding factors in the spectral variability through experimental studies, 2) selection of an optimal regression model and validation of hyperspectral clustering, and 3) evaluation of field applicability. In the experimental studies, the intrinsic hyperspectral spectra of suspended sediment were collected in a completely mixed state after removing the bottom reflection using a horizontal rotating cylinder. Then, hyperspectral data on various sediment properties (particle size and mineral contents) and river bed properties (sand and vegetation) were collected from sediment tracer experiments in field-scale open channels under different hydraulic conditions and compared with intrinsic hyperspectral spectra. Consequently, the change of the hyperspectral spectrum was different according to the sediment type and particle size distribution. In addition, under the shallow water depth condition of 1 m or less, the shape of the hyperspectral spectrum changed significantly depending on the bed type due to the bottom reflectance. The bottom reflectance substantially affected the hyperspectral spectrum even when the high SSC was distributed. As a result of combining the GMM and RF regression with building a relationship between the SSC and hyperspectral data reflecting the spectral variability, the accuracy was substantially improved compared to the other methods. In particular, even when nonlinearity is considered based on the existing optimal band ratio analysis (OBRA) method, spectral variability could not be reflected due to the limitation of considering only a narrow wavelength range. On the other hand, CMR-OV showed high accuracy while considering a wide range of wavelengths with clusters having distinct spectral characteristics. Finally, the CMR-OV was applied to the straight and meandering reaches of the Hwang River and the confluence of the Nakdong and Hwang Rivers in South Korea to assess field applicability. There was a remarkable improvement in the accuracy and precision of SSC mapping under various river conditions compared to the existing models, and CMR-OV showed robust performance even with non-calibrated datasets. At the river confluence, the mixing pattern between the main river and tributary was apparently retrieved from CMR-OV under optically complex conditions. Compared to the non-clustered model, hyperspectral clustering played a primary role in improving the performance by separating the water bodies originating from both rivers. It was also possible to quantitatively evaluate the complicated mixing pattern in detail compared to the existing point measurement. Therefore, it is expected that the accuracy and efficiency of river investigation will be significantly improved through the SSC measurement method presented in this study.Abstract of dissertation i List of figures ix List of tables xvii List of abbreviations xix List of symbols xxii 1. Introduction 1 2. Theoretical research 13 2.1.1 Pre-processing of hyperspectral image (HSI) 19 2.1.2 Optical characteristics of suspended sediment in rivers 28 2.1.2.1 Theory of solar radiation transfer in rivers 28 2.1.2.2 Heterogeneity of sediment properties 33 2.1.2.3 Effects of bottom reflectance 38 2.1.2.4 Vertical distribution of suspended sediment 41 2.1.3 Retrieval of suspended sediment from remote sensing data 46 2.1.3.1 Remote sensing-based regression approach 46 2.1.3.2 Clustering of remote sensing data 52 2.2 Mapping of suspended sediment concentration in rivers 56 2.2.1 Traditional method for spatial measurement 56 2.2.2 Spatial measurement at river confluences 57 2.2.2.1 Dynamics of flow and mixing at river confluences 57 2.2.2.2 Field experiments in river confluences 64 3. Experimental studies 68 3.1 Experimental cases 68 3.2 Laboratory experiment 74 3.2.1 Experimental setup 74 3.2.2 Experimental method 78 3.3 Field-scale experiments in River Experiment Center 83 3.3.1 Experiments in the straight channel 83 3.3.2 Experiments in the meandering channel 96 3.4 Field survey 116 3.4.1 Study area and field measurement 116 3.4.2 Hydraulic and sediment data in rivers with simple geometry 122 3.4.3 Hydraulic and sediment data in river confluences 126 3.5 Analysis of hyperspectral data of suspended sediment 141 3.5.1 Hyperspectral data of laboratory experiment 142 3.5.2 Hyperspectral data of field-scale experiments 146 3.5.2.1 Effect of bottom reflectance 146 3.5.2.2 Principal component analysis of the effect of suspended sediment properties 154 4. Development of suspended sediment concentration estimator using UAV-based hyperspectral imagery 164 4.1 Outline of Cluster-based Machine learning Regression with Optical Variability (CMR-OV) 164 4.2 Pre-processing of hyperspectral images 168 4.3 Regression models and clustering technique 173 4.3.1 Index-based regression models 173 4.3.2 Machine learning regression models 175 4.3.3 Relevant band selection 183 4.3.4 Gaussian mixture model for clustering 185 4.3.5 Performance criteria 188 4.4 Model development and evaluation 189 4.4.1 Comparison of regression models 189 4.4.1.1 OBRA-based explicit models 189 4.4.1.2 Machine learning-based implicit models 194 4.4.2 Assessment of hyperspectral clustering 200 4.4.3 Spatio-temporal SSCV mapping using CMR-OV 215 5. Evaluation of field applicability of CMR-OV 225 5.1 Outline of field applicability test 225 5.2 Cross-applicability validation of CMR-OV 227 5.3 Assessment of field applicability in rivers with simple geometry 234 5.4 Assessment of field applicability in river confluences 241 5.4.1 Classification of river regions using hyperspectral clustering 241 5.4.2 Retrievals of SSCV map 258 5.4.3 Mixing pattern extraction from SSCv map 271 6. Conclusions and future study 274 6.1 Conclusions 274 6.2 Future directions 278 Reference 280 Appendix 308 Appendix A. Breakthrough curve (BTC) analysis 308 Appendix B. Experimental data 310 Appendix B. 1. BTCs of in-situ measured SSC from field-scale experiments 310 Appendix B. 2. Dataset of spectra from hyperspectral images and corresponding SSC in rivers 330 Appendix C. CMR-OV code 331 국문초록 337박

    Unlocking the benefits of spaceborne imaging spectroscopy for sustainable agriculture

    Get PDF
    With the Environmental Mapping and Analysis Program (EnMAP) mission, launched on April 1st 2022, new opportunities unfold for precision farming and agricultural monitoring. The recurring acquisition of spectrometric imagery from space, contiguously resolving the electromagnetic spectrum in the optical domain (400—2500 nm) within close narrow bands, provides unprecedented data about the interaction of radiation with biophysical and biochemical crop constituents. These interactions manifest in spectral reflectance, carrying important information about crop status and health. This information may be incorporated in agricultural management systems to support necessary efforts to maximize yields against the backdrop of an increased food demand by a growing world population. At the same time, it enables the effective optimization of fertilization and pest control to minimize environmental impacts of agriculture. Deriving biophysical and biochemical crop traits from hyperspectral reflectance thereby always relies on a model. These models are categorized into (1) parametric, (2) nonparametric, (3) physically-based, and (4) hybrid retrieval schemes. Parametric methods define an explicit parameterized expression, relating a number of spectral bands or derivates thereof with a crop trait of interest. Nonparametric methods comprise linear techniques, such as principal component analysis (PCA) which addresses collinearity issues between adjacent bands and enables compression of full spectral information into dimensionality reduced, maximal informative principal components (PCs). Nonparametric nonlinear methods, i.e., machine learning (ML) algorithms apply nonlinear transformations to imaging spectroscopy data and are therefore capable of capturing nonlinear relationships within the contained spectral features. Physically-based methods represent an umbrella term for radiative transfer models (RTMs) and related retrieval schemes, such as look-up-table (LUT) inversion. A simple, easily invertible and specific RTM is the Beer-Lambert law which may be used to directly infer plant water content. The most widely used general and invertible RTM is the one-dimensional canopy RTM PROSAIL, which is coupling the Leaf Optical Properties Spectra model PROSPECT and the canopy reflectance model 4SAIL: Scattering by Arbitrarily Inclined Leaves. Hybrid methods make use of synthetic data sets created by RTMs to calibrate parametric methods or to train nonparametric ML algorithms. Due to the ill-posed nature of RTM inversion, potentially unrealistic and redundant samples in a LUT need to be removed by either implementing physiological constraints or by applying active learning (AL) heuristics. This cumulative thesis presents three different hybrid approaches, demonstrated within three scientific research papers, to derive agricultural relevant crop traits from spectrometric imagery. In paper I the Beer-Lambert law is applied to directly infer the thickness of the optically active water layer (i.e., EWT) from the liquid water absorption feature at 970 nm. The model is calibrated with 50,000 PROSPECT spectra and validated over in situ data. Due to separate water content measurements of leaves, stalks, and fruits during the Munich-North-Isar (MNI) campaigns, findings indicate that depending on the crop type and its structure, different parts of the canopy are observed with optical sensors. For winter wheat, correlation between measured and modelled water content was most promising for ears and leaves, reaching coefficients of determination (R2) up to 0.72 and relative RMSE (rRMSE) of 26%, and in the case of corn for the leaf fraction only (R2 = 0.86, rRMSE = 23%). These results led to the general recommendation to collect destructive area-based plant organ specific EWT measurements instead of the common practice to upscale leaf-based EWT measurements to canopy water content (CWC) by multiplication of the leaf area index (LAI). The developed and calibrated plant water retrieval (PWR) model proved to be transferable in space and time and is ready to be applied to upcoming EnMAP data and any other hyperspectral imagery. In paper II the parametric concept of spectral integral ratios (SIR) is introduced to retrieve leaf chlorophyll a and b content (Cab), leaf carotenoid content (Ccx) and leaf water content (Cw) simultaneously from imaging spectroscopy data in the wavelength range 460—1100 nm. The SIR concept is based on automatic separation of respective absorption features through local peak and intercept analysis between log-transformed reflectance and convex hulls. The approach was validated over a physiologically constrained PROSAIL simulated database, considering natural Ccx-Cab relations and green peak locations. Validation on airborne spectrometric HyMAP data achieved satisfactory results for Cab (R2 = 0.84; RMSE = 9.06 µg cm-2) and CWC (R2 = 0.70; RMSE = 0.05 cm). Retrieved Ccx values were reasonable according to Cab-Ccx-dependence plausibility analysis. Mapping of the SIR results as multiband images (3-segment SIR) allows for an intuitive visualization of dominant absorptions with respect to the three considered biochemical variables. Hence, the presented SIR algorithm allows for computationally efficient and RTM supported robust retrievals of the two most important vegetation pigments as well as of water content and is applicable on satellite imaging spectroscopy data. In paper III a hybrid workflow is presented, combining RTM with ML for inferring crop carbon content (Carea) and aboveground dry and fresh biomass (AGBdry, AGBfresh). The concept involves the establishment of a PROSAIL training database, dimensionality reduction using PCA, optimization in the sampling domain using AL against the 4-year MNI campaign dataset, and training of Gaussian process regression (GPR) ML algorithms. Internal validation of the GPR-Carea and GPR-AGB models achieved R2 of 0.80 for Carea, and R2 of 0.80 and 0.71 for AGBdry and AGBfresh, respectively. Validation with an independent dataset, comprising airborne AVIRIS NG imagery (spectrally resampled to EnMAP) and in situ measurements, successfully demonstrated mapping capabilities for both bare and green fields and generated reliable estimates over winter wheat fields at low associated model uncertainties (< 40%). Overall, the proposed carbon and biomass models demonstrate a promising path toward the inference of these crucial variables over cultivated areas from upcoming spaceborne hyperspectral acquisitions, such as from EnMAP. As conclusions, the following important findings arise regarding parametric and nonparametric hybrid methods as well as in view of the importance of in situ data collection. (1) Uncertainties within the RTM PROSAIL should always be considered. A possible reduction of these uncertainties is thereby opposed to the invertibility of the model and its intended simplicity. (2) Both physiological constraints and AL heuristics should be applied to reduce unrealistic parameter combinations in a PROSAIL calibration or training database. (3) State-of-the-art hybrid ML approaches with the ability to provide uncertainty intervals are anticipated as most promising approach for solving inference problems from hyperspectral Earth observation data due to their synergistic use of RTMs and the high flexibility, accuracy and consistency of nonlinear nonparametric methods. (4) Parametric hybrid approaches, due to their algorithmic transparency, enable deeper insights into fundamental physical limitations of optical remote sensing as compared to ML approaches. (5) Integration-based indices that make full use of available hyperspectral information may serve as physics-aware dimensionality reduced input for ML algorithms to either improve estimations or to serve as endmember for crop type discrimination when additional time series information is available. (6) The validation of quantitative model-based estimations is crucial to evaluate and improve their performance in terms of the underlying assumptions, model parameterizations, and input data. (7) In the face of soon-to-be-available EnMAP data, collection of in situ data for validation of retrieval methods should aim at high variability of measured crop types, high temporal variability over the whole growing season, as well as include area- and biomass-based destructive measurements instead of LAI-upscaled leaf measurements. Provided the perfect functionality of the payload instruments, the success of the EnMAP mission and the here presented methods depend critically on a low-noise, accurate atmospherically corrected reflectance product. High-level outputs of the retrieval methods presented in this thesis may be incorporated into agricultural decision support systems for fertilization and irrigation planning, yield estimation, or estimation of the soil carbon sequestration potential to enable a sustainable intensive agriculture in the future.Mit der am 1. April 2022 gestarteten Satellitenmission Environmental Mapping and Analysis Program (EnMAP) eröffnen sich neue Möglichkeiten für die Präzisionslandwirtschaft und das landwirtschaftliche Monitoring. Die wiederkehrende Erfassung spektrometrischer Bilder aus dem Weltraum, welche das elektromagnetische Spektrum im optischen Bereich (400—2500 nm) innerhalb von engen, schmalen Bändern zusammenhängend auflösen, liefert nie dagewesene Daten über die Interaktionen von Strahlung und biophysikalischen und biochemischen Pflanzenbestandteilen. Diese Wechselwirkungen manifestieren sich in der spektralen Reflektanz, die wichtige Informationen über den Zustand und die Gesundheit der Pflanzen enthält. Vor dem Hintergrund einer steigenden Nachfrage nach Nahrungsmitteln durch eine wachsende Weltbevölkerung können diese Informationen in landwirtschaftliche Managementsysteme einfließen, um eine notwendige Ertragsmaximierung zu unterstützen. Gleichzeitig können sie eine effiziente Optimierung der Düngung und Schädlingsbekämpfung ermöglichen, um die Umweltauswirkungen der Landwirtschaft zu minimieren. Die Ableitung biophysikalischer und biochemischer Pflanzeneigenschaften aus hyperspektralen Reflektanzdaten ist dabei immer von einem Modell abhängig. Diese Modelle werden in (1) parametrische, (2) nichtparametrische, (3) physikalisch basierte und (4) hybride Ableitungsmethoden kategorisiert. Parametrische Methoden definieren einen expliziten parametrisierten Ausdruck, der eine Reihe von Spektralkanälen oder deren Ableitungen mit einem Pflanzenmerkmal von Interesse in Beziehung setzt. Nichtparametrische Methoden umfassen lineare Techniken wie die Hauptkomponentenanalyse (PCA). Diese adressieren Kollinearitätsprobleme zwischen benachbarten Kanälen und komprimieren die gesamte Spektralinformation in dimensionsreduzierte, maximal informative Hauptkomponenten (PCs). Nichtparametrische nichtlineare Methoden, d. h. Algorithmen des maschinellen Lernens (ML), wenden nichtlineare Transformationen auf bildgebende Spektroskopiedaten an und sind daher in der Lage, nichtlineare Beziehungen innerhalb der enthaltenen spektralen Merkmale zu erfassen. Physikalisch basierte Methoden sind ein Oberbegriff für Strahlungstransfermodelle (RTM) und damit verbundene Ableitungsschemata, d. h. Invertierungsverfahren wie z. B. die Invertierung mittels Look-up-Table (LUT). Ein einfaches, leicht invertierbares und spezifisches RTM stellt das Lambert-Beer'sche Gesetz dar, das zur direkten Ableitung des Wassergehalts von Pflanzen verwendet werden kann. Das am weitesten verbreitete, allgemeine und invertierbare RTM ist das eindimensionale Bestandsmodell PROSAIL, eine Kopplung des Blattmodells Leaf Optical Properties Spectra (PROSPECT) mit dem Bestandsreflexionsmodell 4SAIL (Scattering by Arbitrarily Inclined Leaves). Bei hybriden Methoden werden von RTMs generierte, synthetische Datenbanken entweder zur Kalibrierung parametrischer Methoden oder zum Training nichtparametrischer ML-Algorithmen verwendet. Aufgrund der Äquifinalitätsproblematik bei der RTM-Invertierung, müssen potenziell unrealistische und redundante Simulationen in einer solchen Datenbank durch die Implementierung natürlicher physiologischer Beschränkungen oder durch die Anwendung von Active Learning (AL) Heuristiken entfernt werden. In dieser kumulativen Dissertation werden drei verschiedene hybride Ansätze zur Ableitung landwirtschaftlich relevanter Pflanzenmerkmale aus spektrometrischen Bilddaten vorgestellt, die anhand von drei wissenschaftlichen Publikationen demonstriert werden. In Paper I wird das Lambert-Beer'sche Gesetz angewandt, um die Dicke der optisch aktiven Wasserschicht (bzw. EWT) direkt aus dem Absorptionsmerkmal von flüssigem Wasser bei 970 nm abzuleiten. Das Modell wird mit 50.000 PROSPECT-Spektren kalibriert und anhand von In-situ-Daten validiert. Aufgrund separater Messungen des Wassergehalts von Blättern, Stängeln und Früchten während der München-Nord-Isar (MNI)-Kampagnen, zeigen die Ergebnisse, dass je nach Kulturart und -struktur, unterschiedliche Teile des Bestandes mit optischen Sensoren beobachtet werden können. Bei Winterweizen wurde die höchste Korrelation zwischen gemessenem und modelliertem Wassergehalt für Ähren und Blätter erzielt und sie erreichte Bestimmtheitsmaße (R2) von bis zu 0,72 bei einem relativen RMSE (rRMSE) von 26%, bei Mais entsprechend nur für die Blattfraktion (R2 = 0,86, rRMSE = 23%). Diese Ergebnisse führten zu der allgemeinen Empfehlung, Kompartiment-spezifische EWT-Bestandsmessungen zu erheben, anstatt der üblichen Praxis, blattbasierte EWT-Messungen durch Multiplikation mit dem Blattflächenindex (LAI) auf den Bestandswassergehalt (CWC) hochzurechnen. Das entwickelte und kalibrierte Modell zur Ableitung des Pflanzenwassergehalts (PWR) erwies sich als räumlich und zeitlich übertragbar und kann auf bald verfügbare EnMAP-Daten und andere hyperspektrale Bilddaten angewendet werden. In Paper II wird das parametrische Konzept der spektralen Integralratios (SIR) eingeführt, um den Chlorophyll a- und b-Gehalt (Cab), den Karotinoidgehalt (Ccx) und den Wassergehalt (Cw) simultan aus bildgebenden Spektroskopiedaten im Wellenlängenbereich 460-1100 nm zu ermitteln. Das SIR-Konzept basiert auf der automatischen Separierung der jeweiligen Absorptionsmerkmale durch lokale Maxima- und Schnittpunkt-Analyse zwischen log-transformierter Reflektanz und konvexen Hüllen. Der Ansatz wurde anhand einer physiologisch eingeschränkten PROSAIL-Datenbank unter Berücksichtigung natürlicher Ccx-Cab-Beziehungen und Positionen der Maxima im grünen Wellenlängenbereich validiert. Die Validierung mit flugzeuggestützten spektrometrischen HyMAP-Daten ergab zufriedenstellende Ergebnisse für Cab (R2 = 0,84; RMSE = 9,06 µg cm-2) und CWC (R2 = 0,70; RMSE = 0,05 cm). Die ermittelten Ccx-Werte wurden anhand einer Plausibilitätsanalyse entsprechend der Cab-Ccx-Abhängigkeit als sinnvoll bewertet. Die Darstellung der SIR-Ergebnisse als mehrkanalige Bilder (3 segment SIR) ermöglicht zudem eine auf die drei betrachteten biochemischen Variablen bezogene, intuitive Visualisierung der dominanten Absorptionen. Der vorgestellte SIR-Algorithmus ermöglicht somit wenig rechenintensive und RTM-gestützte robuste Ableitungen der beiden wichtigsten Pigmente sowie des Wassergehalts und kann in auf jegliche zukünftig verfügbare Hyperspektraldaten angewendet werden. In Paper III wird ein hybrider Ansatz vorgestellt, der RTM mit ML kombiniert, um den Kohlenstoffgehalt (Carea) sowie die oberirdische trockene und frische Biomasse (AGBdry, AGBfresh) abzuschätzen. Das Konzept umfasst die Erstellung einer PROSAIL-Trainingsdatenbank, die Dimensionsreduzierung mittels PCA, die Reduzierung der Stichprobenanzahl mittels AL anhand des vier Jahre umspannenden MNI-Kampagnendatensatzes und das Training von Gaussian Process Regression (GPR) ML-Algorithmen. Die interne Validierung der GPR-Carea und GPR-AGB-Modelle ergab einen R2 von 0,80 für Carea und einen R2 von 0,80 bzw. 0,71 für AGBdry und AGBfresh. Die Validierung auf einem unabhängigen Datensatz, der flugzeuggestützte AVIRIS-NG-Bilder (spektral auf EnMAP umgerechnet) und In-situ-Messungen umfasste, zeigte erfolgreich die Kartierungsfähigkeiten sowohl für offene Böden als auch für grüne Felder und führte zu zuverlässigen Schätzungen auf Winterweizenfeldern bei geringen Modellunsicherheiten (< 40%). Insgesamt zeigen die vorgeschlagenen Kohlenstoff- und Biomassemodelle einen vielversprechenden Ansatz auf, der zur Ableitung dieser wichtigen Variablen über Anbauflächen aus künftigen weltraumgestützten Hyperspektralaufnahmen wie jenen von EnMAP genutzt werden kann. Als Schlussfolgerungen ergeben sich die folgenden wichtigen Erkenntnisse in Bezug auf parametrische und nichtparametrische Hybridmethoden sowie bezogen auf die Bedeutung der In-situ-Datenerfassung. (1) Unsicherheiten innerhalb des RTM PROSAIL sollten immer berücksichtigt werden. Eine mögliche Verringerung dieser Unsicherheiten steht dabei der Invertierbarkeit des Modells und dessen beabsichtigter Einfachheit entgegen. (2) Sowohl physiologische Einschränkungen als auch AL-Heuristiken sollten angewendet werden, um unrealistische Parameterkombinationen in einer PROSAIL-Kalibrierungs- oder Trainingsdatenbank zu reduzieren. (3) Modernste ML-Ansätze mit der Fähigkeit, Unsicherheitsintervalle bereitzustellen, werden als vielversprechendster Ansatz für die Lösung von Inferenzproblemen aus hyperspektralen Erdbeobachtungsdaten aufgrund ihrer synergetischen Nutzung von RTMs und der hohen Flexibilität, Genauigkeit und Konsistenz nichtlinearer nichtparametrischer Methoden angesehen. (4) Parametrische hybride Ansätze ermöglichen aufgrund ihrer algorithmischen Transparenz im Vergleich zu ML-Ansätzen tiefere Einblicke in die grundlegenden physikalischen Grenzen der optischen Fernerkundung. (5) Integralbasierte Indizes, die die verfügbare hyperspektrale Information voll ausschöpfen, können als physikalisch-basierte dimensionsreduzierte Inputs für ML-Algorithmen dienen, um entweder Schätzungen zu verbessern oder um als Eingangsdaten die verbesserte Unterscheidung von Kulturpflanzen zu ermöglichen, sobald zusätzliche Zeitreiheninformationen verfügbar sind. (6) Die Validierung quantitativer modellbasierter Schätzungen ist von entscheidender Bedeutung für die Bewertung und Verbesserung ihrer Leistungsfähigkeit in Bezug auf die zugrunde liegenden Annahmen, Modellparametrisierungen und Eingabedaten. (7) Angesichts der bald verfügbaren EnMAP-Daten sollte die Erhebung von In-situ-Daten zur Validierung von Ableitungsmethoden auf eine hohe Variabilität der gemessenen Pflanzentypen und eine hohe zeitliche Variabilität über die gesamte Vegetationsperiode abzielen sowie flächen- und biomassebasierte destruktive Messungen anstelle von LAI-skalierten Blattmessungen umfassen. Unter der Voraussetzung, dass die Messinstrumente perfekt funktionieren, hängt der Erfolg der EnMAP-Mission und der hier vorgestellten Methoden entscheidend von einem rauscharmen, präzise atmosphärisch korrigierten Reflektanzprodukt ab. Die Ergebnisse der in dieser Arbeit vorgestellten Methoden können in landwirtschaftliche Entscheidungsunterstützungssysteme für die Dünge- oder Bewässerungsplanung, die Ertragsabschätzung oder die Schätzung des Potenzials der Kohlenstoffbindung im Boden integriert werden, um eine nachhaltige Intensivlandwirtschaft in der Zukunft zu ermöglichen

    Feasibility Study for an Aquatic Ecosystem Earth Observing System Version 1.2.

    Get PDF
    International audienceMany Earth observing sensors have been designed, built and launched with primary objectives of either terrestrial or ocean remote sensing applications. Often the data from these sensors are also used for freshwater, estuarine and coastal water quality observations, bathymetry and benthic mapping. However, such land and ocean specific sensors are not designed for these complex aquatic environments and consequently are not likely to perform as well as a dedicated sensor would. As a CEOS action, CSIRO and DLR have taken the lead on a feasibility assessment to determine the benefits and technological difficulties of designing an Earth observing satellite mission focused on the biogeochemistry of inland, estuarine, deltaic and near coastal waters as well as mapping macrophytes, macro-algae, sea grasses and coral reefs. These environments need higher spatial resolution than current and planned ocean colour sensors offer and need higher spectral resolution than current and planned land Earth observing sensors offer (with the exception of several R&D type imaging spectrometry satellite missions). The results indicate that a dedicated sensor of (non-oceanic) aquatic ecosystems could be a multispectral sensor with ~26 bands in the 380-780 nm wavelength range for retrieving the aquatic ecosystem variables as well as another 15 spectral bands between 360-380 nm and 780-1400 nm for removing atmospheric and air-water interface effects. These requirements are very close to defining an imaging spectrometer with spectral bands between 360 and 1000 nm (suitable for Si based detectors), possibly augmented by a SWIR imaging spectrometer. In that case the spectral bands would ideally have 5 nm spacing and Full Width Half Maximum (FWHM), although it may be necessary to go to 8 nm wide spectral bands (between 380 to 780nm where the fine spectral features occur -mainly due to photosynthetic or accessory pigments) to obtain enough signal to noise. The spatial resolution of such a global mapping mission would be between ~17 and ~33 m enabling imaging of the vast majority of water bodies (lakes, reservoirs, lagoons, estuaries etc.) larger than 0.2 ha and ~25% of river reaches globally (at ~17 m resolution) whilst maintaining sufficient radiometric resolution

    Classification of North Africa for Use as an Extended Pseudo Invariant Calibration Sites (Epics) for Radiometric Calibration and Stability Monitoring of Optical Satellite Sensors

    Get PDF
    An increasing number of Earth-observing satellite sensors are being launched to meet the insatiable demand for timely and accurate data to help the understanding of the Earth’s complex systems and to monitor significant changes to them. The quality of data recorded by these sensors is a primary concern, as it critically depends on accurate radiometric calibration for each sensor. Pseudo Invariant Calibration Sites (PICS) have been extensively used for radiometric calibration and temporal stability monitoring of optical satellite sensors. Due to limited knowledge about the radiometric stability of North Africa, only a limited number of sites in the region are used for this purpose. This work presents an automated approach to classify North Africa for its potential use as an extended PICS (EPICS) covering vast portions of the continent. An unsupervised classification algorithm identified 19 “clusters” representing distinct land surface types; three clusters were identified with spatial uncertainties within approximately 5% in the shorter wavelength bands and 3% in the longer wavelength bands. A key advantage of the cluster approach is that large numbers of pixels are aggregated into contiguous homogeneous regions sufficiently distributed across the continent to allow multiple imaging opportunities per day, as opposed to imaging a typical PICS once during the sensor’s revisit period. In addition, this work proposes a technique to generate a representative hyperspectral profile for these clusters, as the hyperspectral profile of these identified clusters are mandatory in order to utilize them for performing cross-calibration of optical satellite sensors. The technique was used to generate the profile for the cluster containing the largest number of aggregated pixels. The resulting profile was found to have temporal uncertainties within 5% across all the spectral regions. Overall, this technique shows great potential for generation of representative hyperspectral profiles for any North African cluster, which could allow the use of the entire North Africa Saharan region as an extended PICS (EPICS) dataset for sensor cross-calibration. Furthermore, this work investigates the performance of extended pseudo-invariant calibration sites (EPICS) in cross-calibration for one of Shrestha’s clusters, Cluster 13, by comparing its results to those obtained from a traditional PICS-based cross-calibration. The use of EPICS clusters can significantly increase the number of cross-calibration opportunities within a much shorter time period. The cross-calibration gain ratio estimated using a cluster-based approach had a similar accuracy to the cross-calibration gain derived from region of interest (ROI)-based approaches. The cluster-based cross-calibration gain ratio is consistent within approximately 2% of the ROI-based cross-calibration gain ratio for all bands except for the coastal and shortwave-infrared (SWIR) 2 bands. These results show that image data from any region within Cluster 13 can be used for sensor crosscalibration. Eventually, North Africa can be used a continental scale PICS
    corecore