2,274 research outputs found

    Belief Revision with Uncertain Inputs in the Possibilistic Setting

    Full text link
    This paper discusses belief revision under uncertain inputs in the framework of possibility theory. Revision can be based on two possible definitions of the conditioning operation, one based on min operator which requires a purely ordinal scale only, and another based on product, for which a richer structure is needed, and which is a particular case of Dempster's rule of conditioning. Besides, revision under uncertain inputs can be understood in two different ways depending on whether the input is viewed, or not, as a constraint to enforce. Moreover, it is shown that M.A. Williams' transmutations, originally defined in the setting of Spohn's functions, can be captured in this framework, as well as Boutilier's natural revision.Comment: Appears in Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (UAI1996

    Reasoning with uncertainty using Nilsson's probabilistic logic and the maximum entropy formalism

    Get PDF
    An expert system must reason with certain and uncertain information. This thesis is concerned with the process of Reasoning with Uncertainty. Nilsson's elegant model of "Probabilistic Logic" has been chosen as the framework for this investigation, and the information theoretical aspect of the maximum entropy formalism as the inference engine. These two formalisms, although semantically compelling, offer major complexity problems to the implementor. Probabilistic Logic models the complete uncertainty space, and the maximum entropy formalism finds the least commitment probability distribution within the uncertainty space. The main finding in this thesis is that Nilsson's Probabilistic Logic can be successfully developed beyond the structure proposed by Nilsson. Some deficiencies in Nilsson's model have been uncovered in the area of probabilistic representation, making Probabilistic Logic less powerful than Bayesian Inference techniques. These deficiencies are examined and a new model of entailment is presented which overcomes these problems, allowing Probabilistic Logic the full representational power of Bayesian Inferencing. The new model also preserves an important extension which Nilsson's Probabilistic Logic has over Bayesian Inference: the ability to use uncertain evidence. Traditionally, the probabilistic, solution proposed by the maximum entropy formalism is arrived at by solving non-linear simultaneous equations for the aggregate factors of the non- linear terms. In the new model the maximum entropy algorithms are shown to have the highly desirable property of tractability. Although these problems have been solved for probabilistic entailment the problems of complexity are still prevalent in large databases of expert rules. This thesis also considers the use of heuristics and meta level reasoning in a complex knowledge base. Finally, a description of an expert system using these techniques is given

    Probability and uncertainty in Keynes's The General Theory

    Get PDF
    Book description: John Maynard Keynes is undoubtedly the most influential Western economist of the twentieth century. His emphasis on the nature and role of uncertainty in economic thought is a dominant theme in his writings. This book brings together a wide array of experts on Keynes' thought such as Gay Tulip Meeks, Sheila Dow and John Davis who discuss, analyse and criticise such themes as Keynesian probability and uncertainty, the foundations of Keynes' economics and the relationship between Keynes' earlier and later thought. The Philosophy of Keynes' Economics is a readable and comprehensive book that will interest students and academics interested in the man and his thought
    • …
    corecore