7,008 research outputs found

    Feynman-Kac representation of fully nonlinear PDEs and applications

    Get PDF
    The classical Feynman-Kac formula states the connection between linear parabolic partial differential equations (PDEs), like the heat equation, and expectation of stochastic processes driven by Brownian motion. It gives then a method for solving linear PDEs by Monte Carlo simulations of random processes. The extension to (fully)nonlinear PDEs led in the recent years to important developments in stochastic analysis and the emergence of the theory of backward stochastic differential equations (BSDEs), which can be viewed as nonlinear Feynman-Kac formulas. We review in this paper the main ideas and results in this area, and present implications of these probabilistic representations for the numerical resolution of nonlinear PDEs, together with some applications to stochastic control problems and model uncertainty in finance

    G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito's type

    Full text link
    We introduce a notion of nonlinear expectation --G--expectation-- generated by a nonlinear heat equation with infinitesimal generator G. We first discuss the notion of G-standard normal distribution. With this nonlinear distribution we can introduce our G-expectation under which the canonical process is a G--Brownian motion. We then establish the related stochastic calculus, especially stochastic integrals of Ito's type with respect to our G--Brownian motion and derive the related Ito's formula. We have also give the existence and uniqueness of stochastic differential equation under our G-expectation. As compared with our previous framework of g-expectations, the theory of G-expectation is intrinsic in the sense that it is not based on a given (linear) probability space.Comment: Submited to Proceedings Abel Symposium 2005, Dedicated to Professor Kiyosi Ito for His 90th Birthda

    Liu process and uncertain calculus

    Get PDF
    • …
    corecore