6,256 research outputs found

    Investigation of air transportation technology at Princeton University, 1991-1992

    Get PDF
    The Air Transportation Research Program at Princeton University proceeded along six avenues during the past year: (1) intelligent flight control; (2) computer-aided control system design; (3) neural networks for flight control; (4) stochastic robustness of flight control systems; (5) microburst hazards to aircraft; and (6) fundamental dynamics of atmospheric flight. This research has resulted in a number of publications, including archival papers and conference papers. An annotated bibliography of publications that appeared between June 1991 and June 1992 appears at the end of this report. The research that these papers describe was supported in whole or in part by the Joint University Program, including work that was completed prior to the reporting period

    Evidence-Based Uncertainty Modeling of Constitutive Models with Application in Design Optimization

    Get PDF
    Phenomenological material models such as Johnson-Cook plasticity are often used in finite element simulations of large deformation processes at different strain rates and temperatures. Since the material constants that appear in such models depend on the material, experimental data, fitting method, as well as the mathematical representation of strain rate and temperature effects, the predicted material behavior is subject to uncertainty. In this dissertation, evidence theory is used for modeling uncertainty in the material constants, which is represented by separate belief structures that are combined into a joint belief structure and propagated using impact loading simulation of structures. Yager’s rule is used for combining evidence obtained from more than one source. Uncertainty is quantified using belief, plausibility, and plausibility-decision functions. An evidence-based design optimization (EBDO) approach is presented where the nondeterministic response functions are expressed using evidential reasoning. The EBDO approach accommodates field material uncertainty in addition to the embedded uncertainty in the material constants. This approach is applied to EBDO of an externally stiffened circular tube under axial impact load with and without consideration of material field uncertainty caused by spatial variation of material uncertainties due to manufacturing effects. Surrogate models are developed for approximation of structural response functions and uncertainty propagation. The EBDO example problem is solved using genetic algorithms. The uncertainty modeling and EBDO results are presented and discussed

    E2GKpro: An evidential evolving multi-modeling approach for system behavior prediction with applications.

    No full text
    International audienceNonlinear dynamical systems identification and behavior prediction are di cult problems encountered in many areas of industrial applications such as fault diagnosis and prognosis. In practice, the analytical description of a nonlinear system directly from observed data is a very challenging task because of the the too large number of the related parameters to be estimated. As a solution, multi-modeling approaches have lately been applied and consist in dividing the operating range of the system under study into di erent operating regions easier to describe by simpler functions to be combined. In order to take into consideration the uncertainty related to the available data as well as the uncertainty resulting from the nonlinearity of the system, evidence theory is of particular interest, because it permits the explicit modeling of doubt and ignorance. In the context of multi-modeling, information of doubt may be exploited to properly segment the data and take into account the uncertainty in the transitions between the operating regions. Recently, the Evidential Evolving Gustafson-Kessel algorithm (E2GK) has been proposed to ensure an online partitioning of the data into clusters that correspond to operating regions. Based on E2GK, a multi-modeling approach called E2GKpro is introduced in this paper, which dynamically performs the estimation of the local models by upgrading and modifying their parameters while data arrive. The proposed algorithm is tested on several datasets and compared to existing approaches. The results show that the use of virtual centroids in E2GKpro account for its robustness to noise and generating less operating regions while ensuring precise predictions
    • …
    corecore