367 research outputs found

    Unbounded entanglement in nonlocal games

    Get PDF
    Quantum entanglement is known to provide a strong advantage in many two-party distributed tasks. We investigate the question of how much entanglement is needed to reach optimal performance. For the first time we show that there exists a purely classical scenario for which no finite amount of entanglement suffices. To this end we introduce a simple two-party nonlocal game HH, inspired by Lucien Hardy's paradox. In our game each player has only two possible questions and can provide bit strings of any finite length as answer. We exhibit a sequence of strategies which use entangled states in increasing dimension dd and succeed with probability 1O(dc)1-O(d^{-c}) for some c0.13c\geq 0.13. On the other hand, we show that any strategy using an entangled state of local dimension dd has success probability at most 1Ω(d2)1-\Omega(d^{-2}). In addition, we show that any strategy restricted to producing answers in a set of cardinality at most dd has success probability at most 1Ω(d2)1-\Omega(d^{-2}). Finally, we generalize our construction to derive similar results starting from any game GG with two questions per player and finite answers sets in which quantum strategies have an advantage.Comment: We have removed the inaccurate discussion of infinite-dimensional strategies in Section 5. Other minor correction

    Explicit lower and upper bounds on the entangled value of multiplayer XOR games

    Get PDF
    XOR games are the simplest model in which the nonlocal properties of entanglement manifest themselves. When there are two players, it is well known that the bias --- the maximum advantage over random play --- of entangled players can be at most a constant times greater than that of classical players. Recently, P\'{e}rez-Garc\'{i}a et al. [Comm. Math. Phys. 279 (2), 2008] showed that no such bound holds when there are three or more players: the advantage of entangled players over classical players can become unbounded, and scale with the number of questions in the game. Their proof relies on non-trivial results from operator space theory, and gives a non-explicit existence proof, leading to a game with a very large number of questions and only a loose control over the local dimension of the players' shared entanglement. We give a new, simple and explicit (though still probabilistic) construction of a family of three-player XOR games which achieve a large quantum-classical gap (QC-gap). This QC-gap is exponentially larger than the one given by P\'{e}rez-Garc\'{i}a et. al. in terms of the size of the game, achieving a QC-gap of order N\sqrt{N} with N2N^2 questions per player. In terms of the dimension of the entangled state required, we achieve the same (optimal) QC-gap of N\sqrt{N} for a state of local dimension NN per player. Moreover, the optimal entangled strategy is very simple, involving observables defined by tensor products of the Pauli matrices. Additionally, we give the first upper bound on the maximal QC-gap in terms of the number of questions per player, showing that our construction is only quadratically off in that respect. Our results rely on probabilistic estimates on the norm of random matrices and higher-order tensors which may be of independent interest.Comment: Major improvements in presentation; results identica

    Bell nonlocality

    Full text link
    Bell's 1964 theorem, which states that the predictions of quantum theory cannot be accounted for by any local theory, represents one of the most profound developments in the foundations of physics. In the last two decades, Bell's theorem has been a central theme of research from a variety of perspectives, mainly motivated by quantum information science, where the nonlocality of quantum theory underpins many of the advantages afforded by a quantum processing of information. The focus of this review is to a large extent oriented by these later developments. We review the main concepts and tools which have been developed to describe and study the nonlocality of quantum theory, and which have raised this topic to the status of a full sub-field of quantum information science.Comment: 65 pages, 7 figures. Final versio

    Quantum XOR Games

    Get PDF
    We introduce quantum XOR games, a model of two-player one-round games that extends the model of XOR games by allowing the referee's questions to the players to be quantum states. We give examples showing that quantum XOR games exhibit a wide range of behaviors that are known not to exist for standard XOR games, such as cases in which the use of entanglement leads to an arbitrarily large advantage over the use of no entanglement. By invoking two deep extensions of Grothendieck's inequality, we present an efficient algorithm that gives a constant-factor approximation to the best performance players can obtain in a given game, both in case they have no shared entanglement and in case they share unlimited entanglement. As a byproduct of the algorithm we prove some additional interesting properties of quantum XOR games, such as the fact that sharing a maximally entangled state of arbitrary dimension gives only a small advantage over having no entanglement at all.Comment: 43 page
    corecore