164 research outputs found

    Unbounded Dynamic Predicate Compositions in Attribute-Based Encryption

    Get PDF
    We present several transformations that combine a set of attribute-based encryption (ABE) schemes for simpler predicates into a new ABE scheme for more expressive composed predicates. Previous proposals for predicate compositions of this kind, the most recent one being that of Ambrona et.al. at Crypto\u2717, can be considered static (or partially dynamic), meaning that the policy (or its structure) that specifies a composition must be fixed at the setup. Contrastingly, our transformations are dynamic and unbounded: they allow a user to specify an arbitrary and unbounded-size composition policy right into his/her own key or ciphertext. We propose transformations for three classes of composition policies, namely, the classes of any monotone span programs, any branching programs, and any deterministic finite automata. These generalized policies are defined over arbitrary predicates, hence admitting modular compositions. One application from modularity is a new kind of ABE for which policies can be ``nested\u27\u27 over ciphertext and key policies. As another application, we achieve the first fully secure completely unbounded key-policy ABE for non-monotone span programs, in a modular and clean manner, under the q-ratio assumption. Our transformations work inside a generic framework for ABE called symbolic pair encoding, proposed by Agrawal and Chase at Eurocrypt\u2717. At the core of our transformations, we observe and exploit an unbounded nature of the symbolic property so as to achieve unbounded-size policy compositions

    Unbounded Dynamic Predicate Compositions in ABE from Standard Assumptions

    Get PDF
    At Eurocrypt\u2719, Attrapadung presented several transformations that dynamically compose a set of attribute-based encryption (ABE) schemes for simpler predicates into a new ABE scheme for more expressive predicates. Due to the powerful unbounded and modular nature of his compositions, many new ABE schemes can be obtained in a systematic manner. However, his approach heavily relies on qq-type assumptions, which are not standard. Devising such powerful compositions from standard assumptions was left as an important open problem. In this paper, we present a new framework for constructing ABE schemes that allow unbounded and dynamic predicate compositions among them, and show that the adaptive security of these composed ABE will be preserved by relying only on the standard matrix Diffie-Hellman (MDDH) assumption. This thus resolves the open problem posed by Attrapadung. As for applications, we obtain various ABEs that are the first such instantiations of their kinds from standard assumptions.These include the following adaptively secure large-universe ABEs for Boolean formulae under MDDH: - The first completely unbounded monotone key-policy (KP)/ciphertext-policy (CP) ABE. Such ABE was recently proposed, but only for the KP and small-universe flavor (Kowalczyk and Wee, Eurocrypt\u2719). - The first completely unbounded non-monotone KP/CP-ABE. Especially, our ABEs support a new type of non-monotonicity that subsumes previous two types of non-monotonicity, namely, by Ostrovsky et al. (CCS\u2707) and by Okamoto and Takashima (CRYPTO\u2710). - The first (non-monotone) KP and CP-ABE with constant-size ciphertexts and secret keys, respectively. - The first KP and CP-ABE with constant-size secret keys and ciphertexts, respectively. At the core of our framework lies a new partially symmetric design of the core 1-key 1-ciphertext oracle component called Key Encoding Indistinguishability, which exploits the symmetry so as to obtain compositions

    Unbounded Predicate Inner Product Functional Encryption from Pairings

    Get PDF
    Predicate inner product functional encryption (P-IPFE) is essentially attribute-based IPFE (AB-IPFE) which additionally hides attributes associated to ciphertexts. In a P-IPFE, a message x is encrypted under an attribute w and a secret key is generated for a pair (y, v) such that recovery of ⟨ x, y⟩ requires the vectors w, v to satisfy a linear relation. We call a P-IPFE unbounded if it can encrypt unbounded length attributes and message vectors. ∙ zero predicate IPFE. We construct the first unbounded zero predicate IPFE (UZP-IPFE) which recovers ⟨ x, y⟩ if ⟨ w, v⟩ = 0 . This construction is inspired by the unbounded IPFE of Tomida and Takashima (ASIACRYPT 2018) and the unbounded zero inner product encryption of Okamoto and Takashima (ASIACRYPT 2012). The UZP-IPFE stands secure against general attackers capable of decrypting the challenge ciphertext. Concretely, it provides full attribute-hiding security in the indistinguishability-based semi-adaptive model under the standard symmetric external Diffie–Hellman assumption. ∙ non-zero predicate IPFE. We present the first unbounded non-zero predicate IPFE (UNP-IPFE) that successfully recovers ⟨ x, y⟩ if ⟨ w, v⟩ ≠ 0 . We generically transform an unbounded quadratic FE (UQFE) scheme to weak attribute-hiding UNP-IPFE in both public and secret key setting. Interestingly, our secret key simulation secure UNP-IPFE has succinct secret keys and is constructed from a novel succinct UQFE that we build in the random oracle model. We leave the problem of constructing a succinct public key UNP-IPFE or UQFE in the standard model as an important open problem

    GLUE: Generalizing Unbounded Attribute-Based Encryption for Flexible Efficiency Trade-Offs

    Get PDF
    Ciphertext-policy attribute-based encryption is a versatile primitive that has been considered extensively to securely manage data in practice. Especially completely unbounded schemes are attractive, because they do not restrict the sets of attributes and policies. So far, any such schemes that support negations in the access policy or that have online/offline extensions have an inefficient decryption algorithm. In this work, we propose GLUE (Generalized, Large-universe, Unbounded and Expressive), which is a novel scheme that allows for the efficient implementation of the decryption while allowing the support of both negations and online/offline extensions. We achieve these properties simultaneously by uncovering an underlying dependency between encryption and decryption, which allows for a flexible trade-off in their efficiency. For the security proof, we devise a new technique that enables us to generalize multiple existing schemes. As a result, we obtain a completely unbounded scheme supporting negations that, to the best of our knowledge, outperforms all existing such schemes in the decryption algorithm

    A Practical Compiler for Attribute-Based Encryption: New Decentralized Constructions and More

    Get PDF
    The pair encodings framework is an important result in the simplified design of complex attribute-based encryption schemes. In particular, it reduces the effort of proving security of a scheme to proving security of the associated pair encoding, which can then be transformed into a provably secure pairing-based encryption scheme with a compiler. Especially the symbolic property, as introduced by Agrawal and Chase (EUROCRYPT \u2717), has proven to be a valuable security notion that is both simple to verify and applies to many schemes. Nevertheless, several practical extensions using full-domain hashes or employing multiple authorities cannot be instantiated with this compiler, and therefore still require complicated proof techniques. In this work, we present the first compiler for attribute-based encryption schemes that supports such extensions. To this end, we generalize the definitions of pair encodings and the symbolic property. With our compiler, we flexibly instantiate any pair encodings that satisfy this new notion of the symbolic property in any pairing-friendly groups, and generically prove the resulting scheme to be selectively secure. To illustrate the effectiveness of our new compiler, we give several new multi-authority and hash-based constructions

    Decentralized Multi-Authority ABE for NC^1 from Computational-BDH

    Get PDF
    Decentralized multi-authority attribute-based encryption (-) is a strengthening of standard ciphertext-policy attribute-based encryption so that there is no trusted central authority: any party can become an authority and there is no requirement for any global coordination other than the creation of an initial set of common reference parameters. Essentially, any party can act as an authority for some attribute by creating a public key of its own and issuing private keys to different users that reflect their attributes. This paper presents the first - proven secure under the standard search variant of bilinear Diffie-Hellman (CBDH) and in the random oracle model. Our scheme supports all access policies captured by 1 circuits. All previous constructions were proven secure in the random oracle model and additionally were based on decision assumptions such as the DLIN assumption, non-standard -type assumptions, or subspace decision assumptions over composite-order bilinear groups

    Access Control and Service-Oriented Architectures.

    Get PDF
    Access Control and Service-Oriented Architectures" investigates in which way logical access control can be achieved effectively, in particular in highly dynamic environments such as service-oriented architectures (SOA's). The author combines state-of-the-art best-practice and projects these onto the SOA. In doing so, he identifies strengths of current approaches, but also pinpoints weaknesses. These weaknesses are subsequently mitigated by introducing an innovative new framework called EFSOC. The framework is validated empirically and preliminary implementations are discussed.

    A Generic Construction of CCA-secure Attribute-based Encryption with Equality Test

    Get PDF
    Attribute-based encryption with equality test (ABEET\mathsf{ABEET}) is an extension of the ordinary attribute-based encryption (ABE\mathsf{ABE}), where trapdoors enable us to check whether two ciphertexts are encryptions of the same message. Thus far, several CCA-secure ABEET\mathsf{ABEET} schemes have been proposed for monotone span programs satisfying selective security under qq-type assumptions. In this paper, we propose a generic construction of CCA-secure ABEET\mathsf{ABEET} from delegatable ABE\mathsf{ABE}. Specifically, our construction is an attribute-based extension of Lee et al.\u27s generic construction of identity-based encryption with equality test from hierarchical identity-based encryption. Even as far as we know, there are various delegatable ABE\mathsf{ABE} schemes. Therefore, we obtain various ABEET\mathsf{ABEET} schemes with new properties that have not been achieved before such as various predicates, adaptive security, standard assumptions, compact ciphertexts/secret keys, and lattice-based constructions

    Unbounded Predicate Inner Product Functional Encryption from Pairings

    Get PDF
    Predicate inner product functional encryption (P-IPFE) is essentially attribute-based IPFE (AB-IPFE) which additionally hides attributes associated to ciphertexts. In a P-IPFE, a message x is encrypted under an attribute w and a secret key is generated for a pair (y, v) such that recovery of ⟨x, y⟩ requires the vectors w, v to satisfy a linear relation. We call a P-IPFE unbounded if it can encrypt unbounded length attributes and message vectors. • zero predicate IPFE. We construct the first unbounded zero predicate IPFE (UZP-IPFE) which recovers ⟨x,y⟩ if ⟨w,v⟩ = 0. This construction is inspired by the unbounded IPFE of Tomida and Takashima (ASIACRYPT 2018) and the unbounded zero inner product encryption of Okamoto and Takashima (ASIACRYPT 2012). The UZP-IPFE stands secure against general attackers capable of decrypting the challenge ciphertext. Concretely, it provides full attribute-hiding security in the indistinguishability-based semi-adaptive model under the standard symmetric external Diffie-Hellman assumption. • non-zero predicate IPFE. We present the first unbounded non-zero predicate IPFE (UNP-IPFE) that successfully recovers ⟨x, y⟩ if ⟨w, v⟩ ≠ 0. We generically transform an unbounded quadratic FE (UQFE) scheme to weak attribute-hiding UNP-IPFE in both public and secret key settings. Interestingly, our secret key simulation secure UNP-IPFE has succinct secret keys and is constructed from a novel succinct UQFE that we build in the random oracle model. We leave the problem of constructing a succinct public key UNP-IPFE or UQFE in the standard model as an important open problem

    Advanced Features in Protocol Verification: Theory, Properties, and Efficiency in Maude-NPA

    Full text link
    The area of formal analysis of cryptographic protocols has been an active one since the mid 80’s. The idea is to verify communication protocols that use encryption to guarantee secrecy and that use authentication of data to ensure security. Formal methods are used in protocol analysis to provide formal proofs of security, and to uncover bugs and security flaws that in some cases had remained unknown long after the original protocol publication, such as the case of the well known Needham-Schroeder Public Key (NSPK) protocol. In this thesis we tackle problems regarding the three main pillars of protocol verification: modelling capabilities, verifiable properties, and efficiency. This thesis is devoted to investigate advanced features in the analysis of cryptographic protocols tailored to the Maude-NPA tool. This tool is a model-checker for cryptographic protocol analysis that allows for the incorporation of different equational theories and operates in the unbounded session model without the use of data or control abstraction. An important contribution of this thesis is relative to theoretical aspects of protocol verification in Maude-NPA. First, we define a forwards operational semantics, using rewriting logic as the theoretical framework and the Maude programming language as tool support. This is the first time that a forwards rewriting-based semantics is given for Maude-NPA. Second, we also study the problem that arises in cryptographic protocol analysis when it is necessary to guarantee that certain terms generated during a state exploration are in normal form with respect to the protocol equational theory. We also study techniques to extend Maude-NPA capabilities to support the verification of a wider class of protocols and security properties. First, we present a framework to specify and verify sequential protocol compositions in which one or more child protocols make use of information obtained from running a parent protocol. Second, we present a theoretical framework to specify and verify protocol indistinguishability in Maude-NPA. This kind of properties aim to verify that an attacker cannot distinguish between two versions of a protocol: for example, one using one secret and one using another, as it happens in electronic voting protocols. Finally, this thesis contributes to improve the efficiency of protocol verification in Maude-NPA. We define several techniques which drastically reduce the state space, and can often yield a finite state space, so that whether the desired security property holds or not can in fact be decided automatically, in spite of the general undecidability of such problems.Santiago Pinazo, S. (2015). Advanced Features in Protocol Verification: Theory, Properties, and Efficiency in Maude-NPA [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/4852
    corecore