15,706 research outputs found

    Simultaneous Mode, Input and State Estimation for Switched Linear Stochastic Systems

    Full text link
    In this paper, we propose a filtering algorithm for simultaneously estimating the mode, input and state of hidden mode switched linear stochastic systems with unknown inputs. Using a multiple-model approach with a bank of linear input and state filters for each mode, our algorithm relies on the ability to find the most probable model as a mode estimate, which we show is possible with input and state filters by identifying a key property, that a particular residual signal we call generalized innovation is a Gaussian white noise. We also provide an asymptotic analysis for the proposed algorithm and provide sufficient conditions for asymptotically achieving convergence to the true model (consistency), or to the 'closest' model according to an information-theoretic measure (convergence). A simulation example of intention-aware vehicles at an intersection is given to demonstrate the effectiveness of our approach.Comment: Submitted to SIAM Journal on Control and Optimizatio

    Nonlinear Unknown Input and State Estimation Algorithm in Mobile Robots

    Full text link
    This technical report provides the description and the derivation of a novel nonlinear unknown input and state estimation algorithm (NUISE) for mobile robots. The algorithm is designed for real-world robots with nonlinear dynamic models and subject to stochastic noises on sensing and actuation. Leveraging sensor readings and planned control commands, the algorithm detects and quantifies anomalies on both sensors and actuators. Later, we elaborate the dynamic models of two distinctive mobile robots for the purpose of demonstrating the application of NUISE. This report serves as a supplementary document for [1].Comment: arXiv admin note: text overlap with arXiv:1708.0183

    Generic Variance Bounds on Estimation and Prediction Errors in Time Series Analysis: An Entropy Perspective

    Full text link
    In this paper, we obtain generic bounds on the variances of estimation and prediction errors in time series analysis via an information-theoretic approach. It is seen in general that the error bounds are determined by the conditional entropy of the data point to be estimated or predicted given the side information or past observations. Additionally, we discover that in order to achieve the prediction error bounds asymptotically, the necessary and sufficient condition is that the "innovation" is asymptotically white Gaussian. When restricted to Gaussian processes and 1-step prediction, our bounds are shown to reduce to the Kolmogorov-Szeg\"o formula and Wiener-Masani formula known from linear prediction theory

    Switching and Data Injection Attacks on Stochastic Cyber-Physical Systems: Modeling, Resilient Estimation and Attack Mitigation

    Full text link
    In this paper, we consider the problem of attack-resilient state estimation, that is to reliably estimate the true system states despite two classes of attacks: (i) attacks on the switching mechanisms and (ii) false data injection attacks on actuator and sensor signals, in the presence of unbounded stochastic process and measurement noise signals. We model the systems under attack as hidden mode stochastic switched linear systems with unknown inputs and propose the use of a multiple-model inference algorithm to tackle these security issues. Moreover, we characterize fundamental limitations to resilient estimation (e.g., upper bound on the number of tolerable signal attacks) and discuss the topics of attack detection, identification and mitigation under this framework. Simulation examples of switching and false data injection attacks on a benchmark system and an IEEE 68-bus test system show the efficacy of our approach to recover resilient (i.e., asymptotically unbiased) state estimates as well as to identify and mitigate the attacks

    Second-Order Fault Tolerant Extended Kalman Filter for Discrete Time Nonlinear Systems

    Get PDF
    As missing sensor data may severely degrade the overall system performance and stability, reliable state estimation is of great importance in modern data-intensive control, computing, and power systems applications. Aiming at providing a more robust and resilient state estimation technique, this paper presents a novel second-order fault-tolerant extended Kalman filter estimation framework for discrete-time stochastic nonlinear systems under sensor failures, bounded observer-gain perturbation, extraneous noise, and external disturbances condition. The failure mechanism of multiple sensors is assumed to be independent of each other with various malfunction rates. The proposed approach is a locally unbiased, minimum estimation error covariance based nonlinear observer designed for dynamic state estimation under these conditions. It has been successfully applied to a benchmark target-trajectory tracking application. Computer simulation studies have demonstrated that the proposed second-order fault-tolerant extended Kalman filter provides more accurate estimation results, in comparison with traditional first- and second-order extended Kalman filter. Experimental results have demonstrated that the proposed second-order fault-tolerant extended Kalman filter can serve as a powerful alternative to the existing nonlinear estimation approaches

    Nonlinear Bayesian Estimation: From Kalman Filtering to a Broader Horizon

    Full text link
    This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades of research effort. To date, one of the most promising and popular approaches is to view and address the problem from a Bayesian probabilistic perspective, which enables estimation of the unknown state variables by tracking their probabilistic distribution or statistics (e.g., mean and covariance) conditioned on the system's measurement data. This article offers a systematic introduction of the Bayesian state estimation framework and reviews various Kalman filtering (KF) techniques, progressively from the standard KF for linear systems to extended KF, unscented KF and ensemble KF for nonlinear systems. It also overviews other prominent or emerging Bayesian estimation methods including the Gaussian filtering, Gaussian-sum filtering, particle filtering and moving horizon estimation and extends the discussion of state estimation forward to more complicated problems such as simultaneous state and parameter/input estimation

    Exploiting Physical Dynamics to Detect Actuator and Sensor Attacks in Mobile Robots

    Full text link
    Mobile robots are cyber-physical systems where the cyberspace and the physical world are strongly coupled. Attacks against mobile robots can transcend cyber defenses and escalate into disastrous consequences in the physical world. In this paper, we focus on the detection of active attacks that are capable of directly influencing robot mission operation. Through leveraging physical dynamics of mobile robots, we develop RIDS, a novel robot intrusion detection system that can detect actuator attacks as well as sensor attacks for nonlinear mobile robots subject to stochastic noises. We implement and evaluate a RIDS on Khepera mobile robot against concrete attack scenarios via various attack channels including signal interference, sensor spoofing, logic bomb, and physical damage. Evaluation of 20 experiments shows that the averages of false positive rates and false negative rates are both below 1%. Average detection delay for each attack remains within 0.40s

    A Gaussian process latent force model for joint input-state estimation in linear structural systems

    Full text link
    The problem of combined state and input estimation of linear structural systems based on measured responses and a priori knowledge of structural model is considered. A novel methodology using Gaussian process latent force models is proposed to tackle the problem in a stochastic setting. Gaussian process latent force models (GPLFMs) are hybrid models that combine differential equations representing a physical system with data-driven non-parametric Gaussian process models. In this work, the unknown input forces acting on a structure are modelled as Gaussian processes with some chosen covariance functions which are combined with the mechanistic differential equation representing the structure to construct a GPLFM. The GPLFM is then conveniently formulated as an augmented stochastic state-space model with additional states representing the latent force components, and the joint input and state inference of the resulting model is implemented using Kalman filter. The augmented state-space model of GPLFM is shown as a generalization of the class of input-augmented state-space models, is proven observable, and is robust compared to conventional augmented formulations in terms of numerical stability. The hyperparameters governing the covariance functions are estimated using maximum likelihood optimization based on the observed data, thus overcoming the need for manual tuning of the hyperparameters by trial-and-error. To assess the performance of the proposed GPLFM method, several cases of state and input estimation are demonstrated using numerical simulations on a 10-dof shear building and a 76-storey ASCE benchmark office tower. Results obtained indicate the superior performance of the proposed approach over conventional Kalman filter based approaches.Comment: Submitted to Mechanical Systems and Signal Processin

    Estimating outcome probabilities of quantum circuits using quasiprobabilities

    Full text link
    We present a method for estimating the probabilities of outcomes of a quantum circuit using Monte Carlo sampling techniques applied to a quasiprobability representation. Our estimate converges to the true quantum probability at a rate determined by the total negativity in the circuit, using a measure of negativity based on the 1-norm of the quasiprobability. If the negativity grows at most polynomially in the size of the circuit, our estimator converges efficiently. These results highlight the role of negativity as a measure of non-classical resources in quantum computation.Comment: 5 pages + 1 page appendix, 1 figure, comments welcome; v2 published versio
    • …
    corecore