29,762 research outputs found

    Unbiased Black-Box Complexities of Jump Functions

    Full text link
    We analyze the unbiased black-box complexity of jump functions with small, medium, and large sizes of the fitness plateau surrounding the optimal solution. Among other results, we show that when the jump size is (1/2ε)n(1/2 - \varepsilon)n, that is, only a small constant fraction of the fitness values is visible, then the unbiased black-box complexities for arities 33 and higher are of the same order as those for the simple \textsc{OneMax} function. Even for the extreme jump function, in which all but the two fitness values n/2n/2 and nn are blanked out, polynomial-time mutation-based (i.e., unary unbiased) black-box optimization algorithms exist. This is quite surprising given that for the extreme jump function almost the whole search space (all but a Θ(n1/2)\Theta(n^{-1/2}) fraction) is a plateau of constant fitness. To prove these results, we introduce new tools for the analysis of unbiased black-box complexities, for example, selecting the new parent individual not by comparing the fitnesses of the competing search points, but also by taking into account the (empirical) expected fitnesses of their offspring.Comment: This paper is based on results presented in the conference versions [GECCO 2011] and [GECCO 2014

    Parallel black-box complexity with tail bounds

    Get PDF
    We propose a new black-box complexity model for search algorithms evaluating λ search points in parallel. The parallel unary unbiased black-box complexity gives lower bounds on the number of function evaluations every parallel unary unbiased black-box algorithm needs to optimise a given problem. It captures the inertia caused by offspring populations in evolutionary algorithms and the total computational effort in parallel metaheuristics. We present complexity results for LeadingOnes and OneMax. Our main result is a general performance limit: we prove that on every function every λ-parallel unary unbiased algorithm needs at least a certain number of evaluations (a function of problem size and λ) to find any desired target set of up to exponential size, with an overwhelming probability. This yields lower bounds for the typical optimisation time on unimodal and multimodal problems, for the time to find any local optimum, and for the time to even get close to any optimum. The power and versatility of this approach is shown for a wide range of illustrative problems from combinatorial optimisation. Our performance limits can guide parameter choice and algorithm design; we demonstrate the latter by presenting an optimal λ-parallel algorithm for OneMax that uses parallelism most effectively

    Black-Box Complexity: Breaking the O(nlogn)O(n \log n) Barrier of LeadingOnes

    Full text link
    We show that the unrestricted black-box complexity of the nn-dimensional XOR- and permutation-invariant LeadingOnes function class is O(nlog(n)/loglogn)O(n \log (n) / \log \log n). This shows that the recent natural looking O(nlogn)O(n\log n) bound is not tight. The black-box optimization algorithm leading to this bound can be implemented in a way that only 3-ary unbiased variation operators are used. Hence our bound is also valid for the unbiased black-box complexity recently introduced by Lehre and Witt (GECCO 2010). The bound also remains valid if we impose the additional restriction that the black-box algorithm does not have access to the objective values but only to their relative order (ranking-based black-box complexity).Comment: 12 pages, to appear in the Proc. of Artificial Evolution 2011, LNCS 7401, Springer, 2012. For the unrestricted black-box complexity of LeadingOnes there is now a tight Θ(nloglogn)\Theta(n \log\log n) bound, cf. http://eccc.hpi-web.de/report/2012/087

    Black-Box Complexity of the Binary Value Function

    Full text link
    The binary value function, or BinVal, has appeared in several studies in theory of evolutionary computation as one of the extreme examples of linear pseudo-Boolean functions. Its unbiased black-box complexity was previously shown to be at most log2n+2\lceil \log_2 n \rceil + 2, where nn is the problem size. We augment it with an upper bound of log2n+2.42141558o(1)\log_2 n + 2.42141558 - o(1), which is more precise for many values of nn. We also present a lower bound of log2n+1.1186406o(1)\log_2 n + 1.1186406 - o(1). Additionally, we prove that BinVal is an easiest function among all unimodal pseudo-Boolean functions at least for unbiased algorithms.Comment: 24 pages, one figure. An extended two-page abstract of this work will appear in proceedings of the Genetic and Evolutionary Computation Conference, GECCO'1

    Reducing the Arity in Unbiased Black-Box Complexity

    Full text link
    We show that for all 1<klogn1<k \leq \log n the kk-ary unbiased black-box complexity of the nn-dimensional \onemax function class is O(n/k)O(n/k). This indicates that the power of higher arity operators is much stronger than what the previous O(n/logk)O(n/\log k) bound by Doerr et al. (Faster black-box algorithms through higher arity operators, Proc. of FOGA 2011, pp. 163--172, ACM, 2011) suggests. The key to this result is an encoding strategy, which might be of independent interest. We show that, using kk-ary unbiased variation operators only, we may simulate an unrestricted memory of size O(2k)O(2^k) bits.Comment: An extended abstract of this paper has been accepted for inclusion in the proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2012

    OneMax in Black-Box Models with Several Restrictions

    Full text link
    Black-box complexity studies lower bounds for the efficiency of general-purpose black-box optimization algorithms such as evolutionary algorithms and other search heuristics. Different models exist, each one being designed to analyze a different aspect of typical heuristics such as the memory size or the variation operators in use. While most of the previous works focus on one particular such aspect, we consider in this work how the combination of several algorithmic restrictions influence the black-box complexity. Our testbed are so-called OneMax functions, a classical set of test functions that is intimately related to classic coin-weighing problems and to the board game Mastermind. We analyze in particular the combined memory-restricted ranking-based black-box complexity of OneMax for different memory sizes. While its isolated memory-restricted as well as its ranking-based black-box complexity for bit strings of length nn is only of order n/lognn/\log n, the combined model does not allow for algorithms being faster than linear in nn, as can be seen by standard information-theoretic considerations. We show that this linear bound is indeed asymptotically tight. Similar results are obtained for other memory- and offspring-sizes. Our results also apply to the (Monte Carlo) complexity of OneMax in the recently introduced elitist model, in which only the best-so-far solution can be kept in the memory. Finally, we also provide improved lower bounds for the complexity of OneMax in the regarded models. Our result enlivens the quest for natural evolutionary algorithms optimizing OneMax in o(nlogn)o(n \log n) iterations.Comment: This is the full version of a paper accepted to GECCO 201
    corecore