20,775 research outputs found

    Sub-method, partial behavioral reflection with Reflectivity: Looking back on 10 years of use

    Full text link
    Context. Refining or altering existing behavior is the daily work of every developer, but that cannot be always anticipated, and software sometimes cannot be stopped. In such cases, unanticipated adaptation of running systems is of interest for many scenarios, ranging from functional upgrades to on-the-fly debugging or monitoring of critical applications. Inquiry. A way of altering software at run time is using behavioral reflection, which is particularly well-suited for unanticipated adaptation of real-world systems. Partial behavioral reflection is not a new idea, and for years many efforts have been made to propose a practical way of expressing it. All these efforts resulted in practical solutions, but which introduced a semantic gap between the code that requires adaptation and the expression of the partial behavior. For example, in Aspect-Oriented Programming, a pointcut description is expressed in another language, which introduces a new distance between the behavior expression (the Advice) and the source code in itself. Approach. Ten years ago, the idea of closing the gap between the code and the expression of the partial behavior led to the implementation of the Reflectivity framework. Using Reflectivity, developers annotate Abstract Syntax Tree (AST) nodes with meta-behavior which is taken into account by the compiler to produce behavioral variations. In this paper, we present Reflectivity, its API, its implementation and its usage in Pharo. We reflect on ten years of use of Reflectivity, and show how it has been used as a basic building block of many innovative ideas. Knowledge. Reflectivity brings a practical way of working at the AST level, which is a high-level representation of the source code manipulated by software developers. It enables a powerful way of dynamically add and modify behavior. Reflectivity is also a flexible mean to bridge the gap between the expression of the meta-behavior and the source code. This ability to apply unanticipated adaptation and to provide behavioral reflection led to many experiments and projects during this last decade by external users. Existing work use Reflectivity to implement reflective libraries or languages extensions, featherweight code instrumentation, dynamic software update, debugging tools and visualization and software analysis tools. Grounding. Reflectivity is actively used in research projects. During the past ten years, it served as a support, either for implementation or as a fundamental base, for many research work including PhD theses, conference, journal and workshop papers. Reflectivity is now an important library of the Pharo language, and is integrated at the heart of the platform. Importance. Reflectivity exposes powerful abstractions to deal with partial behavioral adaptation, while providing a mature framework for unanticipated, non-intrusive and partial behavioral reflection based on AST annotation. Furthermore, even if Reflectivity found its home inside Pharo, it is not a pure Smalltalk-oriented solution. As validation over the practical use of Reflectivity in dynamic object-oriented languages, the API has been ported to Python. Finally, the AST annotation feature of Reflectivity opens new experimentation opportunities about the control that developers could gain on the behavior of their own software

    Run-Time Evolution through Explicit Meta-Objects

    Get PDF
    Software must be constantly adapted due to evolving domain knowledge and unanticipated requirements changes. To adapt a system at run-time we need to reflect on its structure and its behavior. Object-oriented languages introduced reflection to deal with this issue, however, no reflective approach up to now has tried to provide a unified solution to both structural and behavioral reflection. This paper describes Albedo, a unified approach to structural and behavioral reflection. Albedo is a model of fined-grained unanticipated dynamic structural and behavioral adaptation. Instead of providing reflective capabilities as an external mechanism we integrate them deeply in the environment. We show how explicit meta-objects allow us to provide a range of reflective features and thereby evolve both application models and environments at run-time

    Run-time Variability with Roles

    Get PDF
    Adaptability is an intrinsic property of software systems that require adaptation to cope with dynamically changing environments. Achieving adaptability is challenging. Variability is a key solution as it enables a software system to change its behavior which corresponds to a specific need. The abstraction of variability is to manage variants, which are dynamic parts to be composed to the base system. Run-time variability realizes these variant compositions dynamically at run time to enable adaptation. Adaptation, relying on variants specified at build time, is called anticipated adaptation, which allows the system behavior to change with respect to a set of predefined execution environments. This implies the inability to solve practical problems in which the execution environment is not completely fixed and often unknown until run time. Enabling unanticipated adaptation, which allows variants to be dynamically added at run time, alleviates this inability, but it holds several implications yielding system instability such as inconsistency and run-time failures. Adaptation should be performed only when a system reaches a consistent state to avoid inconsistency. Inconsistency is an effect of adaptation happening when the system changes the state and behavior while a series of methods is still invoking. A software bug is another source of system instability. It often appears in a variant composition and is brought to the system during adaptation. The problem is even more critical for unanticipated adaptation as the system has no prior knowledge of the new variants. This dissertation aims to achieve anticipated and unanticipated adaptation. In achieving adaptation, the issues of inconsistency and software failures, which may happen as a consequence of run-time adaptation, are evidently addressed as well. Roles encapsulate dynamic behavior used to adapt players representing the base system, which is the rationale to select roles as the software system's variants. Based on the role concept, this dissertation presents three mechanisms to comprehensively address adaptation. First, a dynamic instance binding mechanism is proposed to loosely bind players and roles. Dynamic binding of roles enables anticipated and unanticipated adaptation. Second, an object-level tranquility mechanism is proposed to avoid inconsistency by allowing a player object to adapt only when its consistent state is reached. Last, a rollback recovery mechanism is proposed as a proactive mechanism to embrace and handle failures resulting from a defective composition of variants. A checkpoint of a system configuration is created before adaptation. If a specialized bug sensor detects a failure, the system rolls back to the most recent checkpoint. These mechanisms are integrated into a role-based runtime, called LyRT. LyRT was validated with three case studies to demonstrate the practical feasibility. This validation showed that LyRT is more advanced than the existing variability approaches with respect to adaptation due to its consistency control and failure handling. Besides, several benchmarks were set up to quantify the overhead of LyRT concerning the execution time of adaptation. The results revealed that the overhead introduced to achieve anticipated and unanticipated adaptation to be small enough for practical use in adaptive software systems. Thus, LyRT is suitable for adaptive software systems that frequently require the adaptation of large sets of objects

    Open Programming Language Interpreters

    Get PDF
    Context: This paper presents the concept of open programming language interpreters and the implementation of a framework-level metaobject protocol (MOP) to support them. Inquiry: We address the problem of dynamic interpreter adaptation to tailor the interpreter's behavior on the task to be solved and to introduce new features to fulfill unforeseen requirements. Many languages provide a MOP that to some degree supports reflection. However, MOPs are typically language-specific, their reflective functionality is often restricted, and the adaptation and application logic are often mixed which hardens the understanding and maintenance of the source code. Our system overcomes these limitations. Approach: We designed and implemented a system to support open programming language interpreters. The prototype implementation is integrated in the Neverlang framework. The system exposes the structure, behavior and the runtime state of any Neverlang-based interpreter with the ability to modify it. Knowledge: Our system provides a complete control over interpreter's structure, behavior and its runtime state. The approach is applicable to every Neverlang-based interpreter. Adaptation code can potentially be reused across different language implementations. Grounding: Having a prototype implementation we focused on feasibility evaluation. The paper shows that our approach well addresses problems commonly found in the research literature. We have a demonstrative video and examples that illustrate our approach on dynamic software adaptation, aspect-oriented programming, debugging and context-aware interpreters. Importance: To our knowledge, our paper presents the first reflective approach targeting a general framework for language development. Our system provides full reflective support for free to any Neverlang-based interpreter. We are not aware of any prior application of open implementations to programming language interpreters in the sense defined in this paper. Rather than substituting other approaches, we believe our system can be used as a complementary technique in situations where other approaches present serious limitations

    Fertility and Income

    Get PDF
    There is an inverse association between income per adult and fertility among countries, and across households this inverse association is also often observed. Many studies find fertility is lower among better educated women and is often higher among women whose families own more land and assets. What do we know about the social consequences of events and policies that change fertility, if they are independent of parent preferences for children or the economic conditions which account for much of the variation in parent lifetime fertility? These effects of exogenous fertility change on the health and welfare of children can are assessed from Kenyan household survey data by analysis of the consequences of twins, and the effect of avoiding unanticipated fertility appears to have a larger beneficial effect on the body mass index or health status of children in the family than would be expected due to variation in fertility which is accounted for by parent education and household land.Sources of Fertility Decline, Twins, Child Health, Kenya

    Object-Centric Reflection: Unifying Reflection and Bringing It Back to Objects

    Get PDF
    Reflective applications are able to query and manipulate the structure and behavior of a running system. This is essential for highly dynamic software that needs to interact with objects whose structure and behavior are not known when the application is written. Software analysis tools, like debuggers, are a typical example. Oddly, although reflection essentially concerns run-time entities, reflective applications tend to focus on static abstractions, like classes and methods, rather than objects. This is phenomenon we call the object paradox, which makes developers less effective by drawing their attention away from run-time objects. To counteract this phenomenon, we propose a purely object-centric approach to reflection. Reflective mechanisms provide object-specific capabilities as another feature. Object-centric reflection proposes to turn this around and put object-specific capabilities as the central reflection mechanism. This change in the reflection architecture allows a unification of various reflection mechanisms and a solution to the object paradox. We introduce Bifr\"ost, an object-centric reflective system based on first-class meta-objects. Through a series of practical examples we demonstrate how object-centric reflection mitigates the object paradox by avoiding the need to reflect on static abstractions. We survey existing approaches to reflection to establish key requirements in the domain, and we show that an object-centric approach simplifies the meta-level and allows a unification of the reflection field. We demonstrate how development itself is enhanced with this new approach: talents are dynamically composable units of reuse, and object-centric debugging prevents the object paradox when debugging. We also demonstrate how software analysis is benefited by object-centric reflection with Chameleon, a framework for building object-centric analysis tools and MetaSpy, a domain-specific profile

    Life's a Bitch: An Atheistic Theology of Grace

    Full text link
    This article was originally published in The Prophet -- a journal created by and for the students at the Boston University School of Theology (BUSTH) to amplify the voices of STH students by promoting and sharing a range of perspectives on matters of concern including, but not limited to, spiritual practices, faith communities and society, the nature of theology, and current affairs. It serves as a platform for STH students to share their academic work, theological reflections, and life experiences with one another and the wider community." "Life's a bitch, and then you die." At least, that is the gospel according to Nas. I cannot remember the circumstances which placed that song on a music roster that is generally composed of Elton John and Nine Inch Nails. Whatever the case, I believe Nas has a point. We hope for an awful lot in this world, but the only thing we can anticipate without a shred of doubt is that we will all suffer and eventually burn out. There is tremendous disparity in the state of our individual human experiences, but everybody ends up as about the same rotting mass of flesh... " [EXCERPT

    Towards Systemic Evaluation

    Get PDF
    Problems of conventional evaluation models can be understood as an impoverished ‘conversation’ between realities (of non-linearity, indeterminate attributes, and ever-changing context), and models of evaluating such realities. Meanwhile, ideas of systems thinking and complexity science—grouped here under the acronym STCS—struggle to gain currency in the big ‘E’ world of institutionalized evaluation. Four evaluation practitioners familiar with evaluation tools associated with STCS offer perspectives on issues regarding mainstream uptake of STCS in the big ‘E’ world. The perspectives collectively suggest three features of practicing systemic evaluation: (i) developing value in conversing between bounded values (evaluations) and unbounded reality (evaluand), with humility; (ii) developing response-ability with evaluand stakeholders based on reflexivity, with empathy; and (iii) developing adaptive rather than mere contingent use(fulness) of STCS ‘tools’ as part of evaluation praxis, with inevitable fallibility and an orientation towards bricolage (adaptive use). The features hint towards systemic evaluation as core to a reconfigured notion of developmental evaluation

    Active Loop Programming for Adaptive Systems

    Get PDF
    We describe a new approach to adaptive system construction, based on our belief that there are no one-way functions in biology. For example, no sensor is a one-way input device, and no effector is a one-way output device. We choose to mimic the fact that all biological systems have many active processing loops running at all times, at various different time and space scales, and all of them both produce and consume data. We wanted to see how far this notion can carry us towards highly adaptive computational systems, in combination with computational reflection and certain other biological principles of organization. We show that it carries us surprisingly far, by describing a system architecture that uses it as a fundamental organizing principle. We define what active loop programming is, show how it provides enormous flexibility in a software-intensive system, and show how it can be implemented with Wrappings, our integration infrastructure for self-modeling systems
    • 

    corecore