664 research outputs found

    Depth Super-Resolution Meets Uncalibrated Photometric Stereo

    Full text link
    A novel depth super-resolution approach for RGB-D sensors is presented. It disambiguates depth super-resolution through high-resolution photometric clues and, symmetrically, it disambiguates uncalibrated photometric stereo through low-resolution depth cues. To this end, an RGB-D sequence is acquired from the same viewing angle, while illuminating the scene from various uncalibrated directions. This sequence is handled by a variational framework which fits high-resolution shape and reflectance, as well as lighting, to both the low-resolution depth measurements and the high-resolution RGB ones. The key novelty consists in a new PDE-based photometric stereo regularizer which implicitly ensures surface regularity. This allows to carry out depth super-resolution in a purely data-driven manner, without the need for any ad-hoc prior or material calibration. Real-world experiments are carried out using an out-of-the-box RGB-D sensor and a hand-held LED light source.Comment: International Conference on Computer Vision (ICCV) Workshop, 201

    Identifying the lights position in photometric stereo under unknown lighting

    Full text link
    Reconstructing the 3D shape of an object from a set of images is a classical problem in Computer Vision. Photometric stereo is one of the possible approaches. It stands on the assumption that the object is observed from a fixed point of view under different lighting conditions. The traditional approach requires that the position of the light sources is accurately known. It has been proved that the lights position can be estimated directly from the data, when at least 6 images of the observed object are available. In this paper, we give a Matlab implementation of the algorithm for solving the photometric stereo problem under unknown lighting, and propose a simple shooting technique to solve the bas-relief ambiguity.Comment: new versio

    Linear Differential Constraints for Photo-polarimetric Height Estimation

    Full text link
    In this paper we present a differential approach to photo-polarimetric shape estimation. We propose several alternative differential constraints based on polarisation and photometric shading information and show how to express them in a unified partial differential system. Our method uses the image ratios technique to combine shading and polarisation information in order to directly reconstruct surface height, without first computing surface normal vectors. Moreover, we are able to remove the non-linearities so that the problem reduces to solving a linear differential problem. We also introduce a new method for estimating a polarisation image from multichannel data and, finally, we show it is possible to estimate the illumination directions in a two source setup, extending the method into an uncalibrated scenario. From a numerical point of view, we use a least-squares formulation of the discrete version of the problem. To the best of our knowledge, this is the first work to consider a unified differential approach to solve photo-polarimetric shape estimation directly for height. Numerical results on synthetic and real-world data confirm the effectiveness of our proposed method.Comment: To appear at International Conference on Computer Vision (ICCV), Venice, Italy, October 22-29, 201

    Photometric Depth Super-Resolution

    Full text link
    This study explores the use of photometric techniques (shape-from-shading and uncalibrated photometric stereo) for upsampling the low-resolution depth map from an RGB-D sensor to the higher resolution of the companion RGB image. A single-shot variational approach is first put forward, which is effective as long as the target's reflectance is piecewise-constant. It is then shown that this dependency upon a specific reflectance model can be relaxed by focusing on a specific class of objects (e.g., faces), and delegate reflectance estimation to a deep neural network. A multi-shot strategy based on randomly varying lighting conditions is eventually discussed. It requires no training or prior on the reflectance, yet this comes at the price of a dedicated acquisition setup. Both quantitative and qualitative evaluations illustrate the effectiveness of the proposed methods on synthetic and real-world scenarios.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2019. First three authors contribute equall

    Asteroid (3200) Phaethon: colors, phase curve, limits on cometary activity and fragmentation

    Get PDF
    We report on a multi-observatory campaign to examine asteroid 3200 Phaethon during its December 2017 close approach to Earth, in order to improve our measurements of its fundamental parameters, and to search for surface variations, cometary activity and fragmentation. The mean colors of Phaethon are B-V = 0.702 +/- 0.004, V-R = 0.309 +/- 0.003, R-I = 0.266 +/- 0.004, neutral to slightly blue, consistent with previous classifications of Phaethon as a F-type or B-type asteroid. Variations in Phaethon's B-V colors (but not V-R or R-I) with observer sub-latitude are seen and may be associated with craters observed by the Arecibo radar. High cadence photometry over phases from 20 to 100 degrees allows a fit to the values of the HG photometric parameters; H = 14.57 +/- 0.02, 13.63 +/- 0.02, 13.28 +/- 0.02, 13.07 +/- 0.02; G = 0.00 +/- 0.01, -0.09 +/- 0.01, -0.10 +/- 0.01, -0.08 +/- 0.01 in the BVRI filters respectively; the negative G values are consistent with other observations of F type asteroids. Light curve variations were seen that are also consistent with concavities reported by Arecibo, indicative of large craters on Phaethon's surface whose ejecta may be the source of the Geminid meteoroid stream. A search for gas/dust production set an upper limit of 0.06 +/- 0.02 kg/s when Phaethon was 1.449 AU from the Sun, and 0.2 +/- 0.1 kg/s at 1.067 AU. A search for meter-class fragments accompanying Phaethon did not find any whose on-sky motion was not also consistent with background main belt asteroids.Comment: Accepted by the Astronomical Journal, 15 pages, 8 figures, 1 animated figur

    Spectroscopic Observations of Hot Lines Constraining Coronal Heating in Solar Active Regions

    Full text link
    EUV observations of warm coronal loops suggest that they are bundles of unresolved strands that are heated impulsively to high temperatures by nanoflares. The plasma would then have the observed properties (e.g., excess density compared to static equilibrium) when it cools into the 1-2 MK range. If this interpretation is correct, then very hot emission should be present outside of proper flares. It is predicted to be vey faint, however. A critical element for proving or refuting this hypothesis is the existence of hot, very faint plasmas which should be at amounts predicted by impulsive heating. We report on the first comprehensive spectroscopic study of hot plasmas in active regions. Data from the EIS spectrometer on Hinode were used to construct emission measure distributions in quiescent active regions in the 1-5 MK temperature range. The distributions are flat or slowly increasing up to approximately 3 MK and then fall off rapidly at higher temperatures. We show that active region models based on impulsive heating can reproduce the observed EM distributions relatively well. Our results provide strong new evidence that coronal heating is impulsive in nature.Comment: ApJ, 2009, in pres

    Solving Uncalibrated Photometric Stereo using Total Variation

    Get PDF
    International audienceEstimating the shape and appearance of an object, given one or several images, is still an open and challenging research problem called 3D-reconstruction. Among the different techniques available, photometric stereo (PS) produces highly accurate results when the lighting conditions have been identified. When these conditions are unknown, the problem becomes the so-called uncalibrated PS problem, which is ill-posed. In this paper, we will show how total variation can be used to reduce the ambiguities of uncalibrated PS, and we will study two methods for estimating the parameters of the generalized bas-relief ambiguity. These methods will be evaluated through the 3D-reconstruction of real-world objects
    • …
    corecore