98 research outputs found

    Linear-Combined-Code-Based Unambiguous Code Discriminator Design for Multipath Mitigation in GNSS Receivers

    Get PDF
    Unambiguous tracking and multipath mitigation for Binary Offset Carrier (BOC) signals are two important requirements of modern Global Navigation Satellite Systems (GNSS) receivers. A GNSS discriminator design method based on optimization technique is proposed in this paper to meet these requirements. Firstly, the discriminator structure based on a linear-combined code is given. Then the requirements of ideal discriminator function are converted into the mathematical constraints and the objective function to form a non-linear optimization problem. Finally, the problem is solved and the local code is generated according to the results. The theoretical analysis and simulation results indicate that the proposed method can completely remove the false lock points for BOC signals and provide superior multipath mitigation performance compared with traditional discriminator and high revolution correlator (HRC) technique. Moreover, the proposed discriminator is easy to implement for not increasing the number of correlators

    Unambiguous Processing Techniques of Binary Offset Carrier Modulated Signals

    Get PDF

    Collective unambiguous positioning with high-order BOC signals

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The unambiguous estimation of high-order BOC signals in harsh propagation conditions is still an open problem in the literature. This paper proposes to overcome the limitations observed in state-of-the-art unambiguous estimation techniques based on the application of existing direct positioning techniques and the exploitation of the spatial diversity introduced by arrays of antennas. In particular, the ambiguity problem is solved as a multiple-input multiple-output (MIMO) estimation problem in the position domain.Peer ReviewedPostprint (author's final draft

    The Global Navigation System Scope (GNSScope): a toolbox for the end-to-end modelling simulation and analysis of GNSS

    Get PDF
    The thesis provides a detailed overview of the work carried out by the author over the course of the research for the award of the degree of Doctor of Philosophy at the University of Westminster, and the performance results of the novel techniques introduced into the literature. The outcome of the work is collectively referred to as the Global Navigation System Scope (GNSScope) Toolbox, offering a complete, fully reconfigurable platform for the end-to-end modeling, simulation and analysis of satellite navigation signals and systems, covering the signal acquisition, tracking, and range processing operations that take place in a generic Global Navigation Satellite System (GNSS) receiver, accompanied by a Graphical User Interface (GUI) providing access to all the techniques available in the toolbox. Designed and implemented entirely in the MATLAB mathematical programming environment using Software Defined Radio (SDR) receiver techniques, the toolbox offers a novel new acquisition algorithm capable of handling all Phase-Shift Keying (PSK) type modulations used on all frequency bands in currently available satellite navigation signals, including all sub-classes of the Binary Offset Carrier (BOC) modulated signals. In order to be able to process all these signals identified by the acquisition search, a novel tracking algorithm was also designed and implemented into the toolbox to track and decode all acquired satellite signals, including those currently intended to be used in future navigation systems, such as the Galileo test signals transmitted by the GIOVE satellites orbiting the Earth. In addition to the developed receiver toolbox, three novel algorithms were also designed to handle weak signals, multipath, and multiple access interference in GNSScope. The Mirrored Channel Mitigation Technique, based on the successive and parallel interference cancellation techniques, reduces the hardware complexity of the interference mitigation process by utilizing the local code and carrier replicas generated in the tracking channels, resulting in a reduction in hardware resources proportional to the number of received strong signals. The Trigonometric Interference Cancellation Technique, used in cross-correlation interference mitigation, exploits the underlying mathematical expressions to simplify the interference removal process, resulting in reduced complexity and execution times by reducing the number of operations by 25% per tracking channel. The Split Chip Summation Technique, based on the binary valued signal modulation compression technique, enhances the amount of information captured from compressing the signal to reveal specific filtering effects on the positive and negative polarity chips of the spreading code. Simulation case studies generated entirely using the GNSScope toolbox will be used throughout the thesis to demonstrate the effectiveness of the novel techniques developed over the course of the research, and the results will be compared to those obtained from other techniques reported in the literature

    Chaotic internal dynamics of dissipative optical soliton molecules

    Full text link
    When a laser cavity supports the propagation of several ultrashort pulses, these pulses interact and can form compact bound states called soliton molecules. Soliton molecules are fascinating objects of nonlinear science, which present striking analogies with their matter molecules counterparts. The soliton pair, composed of two identical pulses, constitutes the chief soliton molecule of fundamental interest. The relative timing and phase between the two propagating pulses are the most salient internal degrees of freedom of the soliton molecule. These two internal degrees of freedom allow self-oscillating soliton molecules, which have indeed been repeatedly observed, whereas the lowdimensional chaotic dynamics of a soliton-pair molecule remains elusive, noting that it would require at least three degrees of freedom. We here report the observation of chaotic soliton-pair molecules within an ultrafast fiber laser, by means of a direct measurement of the relative optical pulse separation with sub-femtosecond precision in real time. Moreover, we demonstrate an all-optical control of the chaotic dynamics followed by the soliton molecule, by injecting a modulated optical signal that resynchronizes the internal periodic vibration of soliton molecule.Comment: 11 pages, 5 figure

    Analyzing Code Tracking Algorithms for Galileo Open Service Signal

    Get PDF
    The ever-increasing public interest on location and positioning services has originated a demand for higher performance Global Navigation Satellite Systems (GNSSs). Galileo Open Service (OS) signal, part of the European contribution to future GNSS, was designed to respond to the above demand. In all GNSSs, the estimation with high accuracy of the Line-Of-Sight (LOS) delay is a prerequisite. The Delay Lock Loops (DLLs) and their enhanced variants (i.e., feed-back code tracking loops) are the structures of choice for the commercial GNSS receivers, but their performance in severe multipath scenarios is still rather limited. In addition, the new satellite positioning system proposals specify the use of a new modulation, the Binary Offset Carrier (BOC) modulation, which triggers a new challenge in the code tracking stage. Therefore, in order to meet this emerging challenge and to improve the accuracy of the delay estimation in severe multipath scenarios, this thesis analyzes feed-back as well as feed-forward code tracking algorithms and proposes a novel algorithm, namely Peak Tracking (PT), which is a combination of both feed-back and feed-forward structures and utilizes the advantages inherent in these structures. In this thesis, the code tracking algorithms are studied and analyzed for Sine BOC (SinBOC) modulated Galileo OS signal for various multipath profiles in Rayleigh fading channel model. The performance of the analyzed algorithms are measured in terms of various well-known criteria such as Root-Mean-Square-Error (RMSE), Mean-Time-to-Lose Lock (MTLL), delay error variance and Multipath Error Envelopes (MEEs). The simulation results show that the proposed PT algorithm outperforms all other analyzed algorithms in various multipath profiles in good Carrier-to-Noise-Ratios (CNRs). The simulation results are compared with the theoretical Cramer-Rao Bound (CRB) and the comparison shows that the delay error variance for PT algorithm approaches the theoretical limit with the increase in CNR. Therefore, the proposed algorithm can be considered as an excellent candidate for implementation in future Galileo receivers, especially when tracking accuracy is a concern. /Kir1

    A New Acquisition Algorithm with Elimination Side Peak for All BOC Signals

    Get PDF
    A new inhibition side peak acquisition (ISPA) algorithm is proposed for binary offset carrier (BOC) modulated signals, which will be utilized in global navigation satellite systems (GNSS). We eliminate all side peaks of the BOC correlation function (CF) by structuring special sequences composed of PRN code and cycle rectangular sequences. The new algorithm can be applied to both generic sine- and cosine-phased BOC signals, as well as to all modulation orders. Theoretical and simulation results demonstrate that the new algorithm can completely eliminate the ambiguity threat in the acquisition process, and it can adapt to lower SNR. In addition, this algorithm is better than the traditional algorithms in acquisition performance and inhibition side peak ability

    A New Acquisition Algorithm with Elimination Side Peak for All BOC Signals

    Get PDF
    A new inhibition side peak acquisition (ISPA) algorithm is proposed for binary offset carrier (BOC) modulated signals, which will be utilized in global navigation satellite systems (GNSS). We eliminate all side peaks of the BOC correlation function (CF) by structuring special sequences composed of PRN code and cycle rectangular sequences. The new algorithm can be applied to both generic sine-and cosine-phased BOC signals, as well as to all modulation orders. Theoretical and simulation results demonstrate that the new algorithm can completely eliminate the ambiguity threat in the acquisition process, and it can adapt to lower SNR. In addition, this algorithm is better than the traditional algorithms in acquisition performance and inhibition side peak ability

    An Unambiguous Tracking Technique for Cosine-Phased BOC Signals with Low Complexity

    Get PDF
    A low-complexity unambiguous tracking method for cosine-phased binary offset carrier (BOCc) signals is proposed in this paper. The proposed method directly constructs a code discriminator function by multiplying two correlation functions. One local reference signal is a specifically designed auxiliary signal whose cross-correlation function with the BOCc signal is an unambiguous S-curve. The other reference signal is a replica BOCc signal whose correlation function with the BOCc signal is used as a "cover" to maintain the slope of the discriminant function as much as possible and to make the final discriminant function non-coherent.The proposed discriminator function has only a single main lock point and can make tracking reliable and unambiguous. In contrast to the traditional unambiguous early-minus-late methods, the proposed method needs only the prompt branch correlator outputs, and the correlation process of the BOCc signal with input signals is the same as that of the carrier loop process. As a result, the proposed method reduces the number of correlators by at least three-quarters. The theoretical analysis and simulation results show that the proposed method has higher code tracking accuracy, lower tracking threshold and better anti-multipath performance than those of PUDLL, SF and SPAR. In conclusion, the proposed method completely eliminates tracking ambiguity, significantly improves tracking performance and reduces implementation complexity

    A Survey on Low-Power GNSS

    Get PDF
    With the miniaturization of electronics, Global Navigation Satellite Systems (GNSS) receivers are getting more and more embedded into devices with harsh energy constraints. This process has led to new signal processing challenges due to the limited processing power on battery-operated devices and to challenging wireless environments, such as deep urban canyons, tunnels and bridges, forest canopies, increased jamming and spoofing. The latter is typically tackled via new GNSS constellations and modernization of the GNSS signals. However, the increase in signal complexity leads to higher computation requirements to recover the signals; thus, the trade-off between precision and energy should be evaluated for each application. This paper dives into low-power GNSS, focusing on the energy consumption of satellite-based positioning receivers used in battery-operated consumer devices and Internet of Things (IoT) sensors. We briefly overview the GNSS basics and the differences between legacy and modernized signals. Factors dominating the energy consumption of GNSS receivers are then reviewed, with special attention given to the complexity of the processing algorithms. Onboard and offloaded (Cloud/Edge) processing strategies are explored and compared. Finally, we highlight the current challenges of today’s research in low-power GNSS.Peer reviewe
    corecore