31 research outputs found

    Intégration de la structure matricielle dans les cubes spatiaux

    Get PDF
    Dans le monde de la géomatique, la fin des années 1990 a été marquée par l'arrivée de nouvelles solutions décisionnelles, nommées SOLAP. Les outils SOLAP fournissent des moyens efficaces pour facilement explorer et analyser des données spatiales. Les capacités spatiales actuelles de ces outils permettent de représenter cartographiquement les phénomènes et de naviguer dans les différents niveaux de détails. Ces fonctionnalités permettent de mieux comprendre les phénomènes, leur distribution et/ou leurs interrelations, ce qui améliore le processus de découverte de connaissances. Toutefois, leurs capacités en termes d'analyses spatiales interactives sont actuellement limitées. Cette limite est principalement due à l'unique utilisation de la structure de données géométrique vectorielle. Dans les systèmes d'information géographique (SIG), la structure de données matricielle offre une alternative très intéressante au vectoriel pour effectuer certaines analyses spatiales. Nous pensons qu'elle pourrait offrir une alternative intéressante également pour les outils SOLAP. Toutefois, il n'existe aucune approche permettant son exploitation dans de tels outils. Ce projet de maîtrise vise ainsi à définir un cadre théorique permettant l'intégration de données matricielles dans les SOLAP. Nous définissons les concepts fondamentaux permettant l'intégration du matriciel dans les cubes de données spatiaux. Nous présentons ensuite quelques expérimentations qui ont permis de les tester et finalement nous initions le potentiel du matriciel pour l'analyse spatiale dans les outils SOLAP

    Vers une optimisation du processus d'analyse en ligne de données 3D : cas des fouilles archéologiques

    Get PDF
    L'archéologie est une discipline des sciences humaines dont l'objet d'étude est l'ensemble des vestiges matériels laissés par l'Homme (objets, bâtiments, infrastructures, paysages...). Une technique précise, la fouille, est employée afin de tirer toutes les informations possibles des sols et structures fouillés en tenant compte de la localisation exacte des objets découverts, de l'étude de la succession des différentes couches de terrain déblayé afin de pouvoir procéder à une datation stratigraphique. L'analyse d'une fouille archéologique demande souvent beaucoup d'efforts pour l'archéologue car, à ce jour, aucun système informatique n'a permis de clairement les aider dans l'analyse de leurs données. Ainsi, pour exploiter des données issues d'une fouille archéologique, nous avons identifié trois critères : la rapidité et la facilité d'utilisation, la possibilité de faire évoluer les données dans le système (les interprétations de l'archéologue suivant des heuristiques qui ne peuvent pas toujours être formalisées de façon absolue) et la visualisation tridimensionnelle. L'outil d'analyse en ligne de type SOLAP est optimisé pour une analyse interactive dite multidimensionnelle où les requêtes, même celles de types agrégatives sont simples et leurs réponses sont rapides. Reste donc à l'optimiser sur les deux autres critères retenus pour exploiter les données issues d'une fouille archéologique et qui marquent les principales faiblesses de l'outil : l'évolution des données pendant la phase d'analyse et l'intégration de la 3e dimension. Ce projet de maîtrise vise à apporter des nouveaux concepts permettant à un utilisateur de réviser ces données pendant sa phase d'analyse. Par la suite, un prototype appliqué à l'archéologie a été élaboré afin de vérifier simplement si les efforts pour réviser des données pouvaient être compatibles avec les efforts d'un outil d'analyse en ligne en conservant la fluidité d'exploration interactive. D'autre part, ce projet de maîtrise a permis d'étudier la faisabilité d'un SOLAP 3D et de soulever une interrogation sur la nécessité d'introduire la 3e dimension à un outil d'analyse en ligne

    Développement d'une approche pour l'analyse solap en temps réel : adapatation aux besoins des activités sportives en plein air

    Get PDF
    Au cours des dernières années, différents types de travaux ont été réalisés indépendamment au sein du même centre de recherche (Centre de Recherche en Géomatique de l'Université Laval). Parmi ceux-ci, on retrouve des travaux axés sur l'acquisition et le traitement des données spatiales en sport de plein air d'une part, et des travaux axés sur l'exploration et l'analyse des données spatiales avec une solution SOLAP d'autre part. L'exploitation conjointe de ces travaux permettait de répondre à de nouvelles attentes et plus particulièrement à une nouvelle application : l'évaluation et l'analyse de la performance d'athlètes pratiquant un sport extérieur grâce à des données calculées à partir d'observations GPS. En effet, suite à des observations GPS, la position, la vitesse et l'accélération de l'athlète peuvent être calculées précisément. Cependant, aucun logiciel ne permettait d'analyser rapidement et facilement les nouvelles données recueillies.Pourtant, les entraîneurs d'athlètes de haut niveau désirent obtenir des données sur les performances actuelles, de façon rapide et exacte, pour ainsi adapter immédiatement leur entraînement et favoriser le succès de l'athlète. Or, la technologie SOLAP offre aux utilisateurs une interface cliente très intuitive pour l'analyse spatio-temporelle. Cependant, son fonctionnement ne permettait pas d'ajouter rapidement de nouvelles données obtenues à partir d'observations GPS. Cette recherche visait alors à développer une approche répondant à des besoins d'analyse SOLAP en temps réel retrouvés dans certaines applications et plus particulièrement dans le sport de haut niveau. Nous avons aussi vérifié qu'une solution SOLAP utilisée dans le domaine de la gestion des entreprises pour faciliter les prises de décision peut être transposée dans celui de l'analyse de la performance des athlètes. Pour ce faire, un SOLAP juste-à-temps, baptisé SOLAP-SPORT, a été développé dans le cadre de ce projet de recherche

    Développement d'une structure topologique de données 3D pour l'analyse de modèles géologiques

    Get PDF
    La géologie a exprimé, face à la géomatique, le besoin de modéliser les objets géologiques en 3D et d'analyser ces modèles pour prendre des décisions plus éclairées. La géomatique répond relativement bien à certain de ces besoins comme celui de construire des modèles géologiques tridimensionnels. Cependant, les systèmes géomatiques (tels que les systèmes d'information géographique) ne sont pas adaptés à la gestion explicite des relations topologiques s'exprimant dans un univers 3D. Ce projet de maîtrise vise à développer une structure de stockage qui régularise les relations spatiales entre des objets tridimensionnels, permettant d'élargir les possibilités d'analyse d'un modèle géologique 3D. Pour réaliser ce projet, quatre étapes ont été nécessaires : 1) inventaire des structures topologiques 2D et 3D, 2) création d'une structure de données géométriques 3D, 3) création d'un prototype et, finalement, 4) réalisation de tests avec le prototype. Avec ces développements, une requête montrant la relation spatiale contient entre des unités géologiques et des fractures a été réalisée en 3D. Les résultats obtenus montrent le grand potentiel de cette approche pour l'analyse de modèle géologique. De plus, la création d'une nouvelle structure topologique de données appliquée aux données géologiques est certes un avancement pour l'application de la géomatique au domaine des sciences de la terre

    Vers des cubes matriciels supportant l’analyse spatiale à la volée dans un contexte décisionnel

    Get PDF
    Depuis l’avènement du SOLAP, la problématique consistant à produire des analyses spatiales à la volée demeure entière. Les travaux précédents se sont tournés vers l’analyse visuelle et le calcul préalable afin d’obtenir des résultats en moins de 10 secondes. L’intégration des données matricielles dans les cubes SOLAP possède un potentiel inexploré pour le traitement à la volée des analyses spatiales. Cette recherche vise à explorer les avantages et les considérations à exploiter les cubes matriciels afin de produire des analyses spatiales à la volée dans un contexte décisionnel. Elle contribue à l’évolution du cadre théorique de l’intégration des données matricielles dans les cubes en ajoutant notamment la notion de couverture matricielle au cube afin de mieux supporter les analyses spatiales matricielles. Elle identifie des causes de la consommation excessive de ressources pour le traitement de ces analyses et propose des pistes d’optimisation basées sur l’exploitation des dimensions matricielles géométriques

    Un système décisionnel pour l’analyse de la qualité des eaux de rivières

    Get PDF
    National audienceThis article describes a decisional system developed to allow the analysis of data about hydro-ecosystem functioning; there are numerous and various data, from several sources. The implemented system includes an integrated database, a datawarehouse for exploring data dimensions, and data mining tools for answering hydroecologists’ questions.Cet article décrit un système décisionnel développé pour permettre l’analyse des données concernant le fonctionnement des hydro-écosystèmes ; ces données sont nombreuses, diverses et issues de sources variées. Le système mis en place comporte une base de données intégrée, un entrepôt permettant l’exploration des dimensions associées aux données, et des outils de fouille permettant de répondre aux questions des hydro-écologues

    Intégration holistique et entreposage automatique des données ouvertes

    Get PDF
    Statistical Open Data present useful information to feed up a decision-making system. Their integration and storage within these systems is achieved through ETL processes. It is necessary to automate these processes in order to facilitate their accessibility to non-experts. These processes have also need to face out the problems of lack of schemes and structural and sematic heterogeneity, which characterize the Open Data. To meet these issues, we propose a new ETL approach based on graphs. For the extraction, we propose automatic activities performing detection and annotations based on a model of a table. For the transformation, we propose a linear program fulfilling holistic integration of several graphs. This model supplies an optimal and a unique solution. For the loading, we propose a progressive process for the definition of the multidimensional schema and the augmentation of the integrated graph. Finally, we present a prototype and the experimental evaluations.Les statistiques présentes dans les Open Data ou données ouvertes constituent des informations utiles pour alimenter un système décisionnel. Leur intégration et leur entreposage au sein du système décisionnel se fait à travers des processus ETL. Il faut automatiser ces processus afin de faciliter leur accessibilité à des non-experts. Ces processus doivent pallier aux problèmes de manque de schémas, d'hétérogénéité structurelle et sémantique qui caractérisent les données ouvertes. Afin de répondre à ces problématiques, nous proposons une nouvelle démarche ETL basée sur les graphes. Pour l'extraction du graphe d'un tableau, nous proposons des activités de détection et d'annotation automatiques. Pour la transformation, nous proposons un programme linéaire pour résoudre le problème d'appariement holistique de données structurelles provenant de plusieurs graphes. Ce modèle fournit une solution optimale et unique. Pour le chargement, nous proposons un processus progressif pour la définition du schéma multidimensionnel et l'augmentation du graphe intégré. Enfin, nous présentons un prototype et les résultats d'expérimentations

    Fouille de données : vers une nouvelle approche intégrant de façon cohérente et transparente la composante spatiale

    Get PDF
    Depuis quelques décennies, on assiste à une présence de plus en plus accrue de l’information géo-spatiale au sein des organisations. Cela a eu pour conséquence un stockage massif d’informations de ce type. Ce phénomène, combiné au potentiel d’informations que renferment ces données, on fait naître le besoin d’en apprendre davantage sur elles, de les utiliser à des fins d’extraction de connaissances qui puissent servir de support au processus de décision de l’entreprise. Pour cela, plusieurs approches ont été envisagées dont premièrement la mise à contribution des outils de fouille de données « traditionnelle ». Mais face à la particularité de l’information géo-spatiale, cette approche s’est soldée par un échec. De cela, est apparue la nécessité d’ériger le processus d’extraction de connaissances à partir de données géographiques en un domaine à part entière : le Geographic Knowlegde Discovery (GKD). La réponse à cette problématique, par le GKD, s’est traduite par la mise en œuvre d’approches qu’on peut catégoriser en deux grandes catégories: les approches dites de prétraitement et celles de traitement dynamique de l’information spatiale. Pour faire face aux limites de ces méthodes et outils nous proposons une nouvelle approche intégrée qui exploite l’existant en matière de fouille de données « traditionnelle ». Cette approche, à cheval entre les deux précédentes vise comme objectif principal, le support du type géo-spatial à toutes les étapes du processus de fouille de données. Pour cela, cette approche s’attachera à exploiter les relations usuelles que les entités géo-spatiales entretiennent entre elles. Un cadre viendra par la suite décrire comment cette approche supporte la composante spatiale en mettant à contribution des bibliothèques de traitement de la donnée géo-spatiale et les outils de fouille « traditionnelle »In recent decades, geospatial data has been more and more present within our organization. This has resulted in massive storage of such information and this, combined with the learning potential of such information, gives birth to the need to learn from these data, to extract knowledge that can be useful in supporting decision-making process. For this purpose, several approaches have been proposed. Among this, the first has been to deal with existing data mining tools in order to extract any knowledge of such data. But due to a specificity of geospatial information, this approach failed. From this arose the need to erect the process of extracting knowledge from geospatial data in its own right; this lead to Geographic Knowledge Discovery. The answer to this problem, by GKD, is reflected in the implementation of approaches that can be categorized into two: the so-called pre-processing approaches and the dynamic treatment of spatial relationships. Given the limitations of these approaches we propose a new approach that exploits the existing data mining tools. This approach can be seen as a compromise of the two previous. It main objective is to support geospatial data type during all steps of data mining process. To do this, the proposed approach will exploit the usual relationships that geo-spatial entities share each other. A framework will then describe how this approach supports the spatial component involving geo-spatial libraries and "traditional" data mining tool
    corecore