1,675 research outputs found

    3D printing is a transformative technology in congenital heart disease

    Get PDF
    Survival in congenital heart disease has steadily improved since 1938, when Dr. Robert Gross successfully ligated for the first time a patent ductus arteriosus in a 7-year-old child. To continue the gains made over the past 80 years, transformative changes with broad impact are needed in management of congenital heart disease. Three-dimensional printing is an emerging technology that is fundamentally affecting patient care, research, trainee education, and interactions among medical teams, patients, and caregivers. This paper first reviews key clinical cases where the technology has affected patient care. It then discusses 3-dimensional printing in trainee education. Thereafter, the role of this technology in communication with multidisciplinary teams, patients, and caregivers is described. Finally, the paper reviews translational technologies on the horizon that promise to take this nascent field even further

    Three-Dimensional Printing of Fetal Models of Congenital Heart Disease Derived From Microfocus Computed Tomography: A Case Series

    Get PDF
    This article presents a case series of n = 21 models of fetal cardiovascular anatomies obtained from post mortem microfocus computed tomography (micro-CT) data. The case series includes a broad range of diagnoses (e.g., tetralogy of Fallot, hypoplastic left heart syndrome, dextrocardia, double outlet right ventricle, atrio-ventricular septal defect) and cases also had a range of associated extra-cardiac malformations (e.g., VACTERL syndrome, central nervous system anomalies, renal anomalies). All cases were successfully reconstructed from the microfocus computed tomography data, demonstrating the feasibility of the technique and of the protocols, including in-house printing with a desktop 3D printer (Form2, Formlabs). All models were printed in 1:1 scale as well as with the 5-fold magnification, to provide insight into the intra-cardiac structures. Possible uses of the models include education and training

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Este número da revista Cadernos de Estudos Sociais estava em organização quando fomos colhidos pela morte do sociólogo Ernesto Laclau. Seu falecimento em 13 de abril de 2014 surpreendeu a todos, e particularmente ao editor Joanildo Burity, que foi seu orientando de doutorado na University of Essex, Inglaterra, e que recentemente o trouxe à Fundação Joaquim Nabuco para uma palestra, permitindo que muitos pudessem dialogar com um dos grandes intelectuais latinoamericanos contemporâneos. Assim, buscamos fazer uma homenagem ao sociólogo argentino publicando uma entrevista inédita concedida durante a sua passagem pelo Recife, em 2013, encerrando essa revista com uma sessão especial sobre a sua trajetória

    Translating Imaging Into 3D Printed Cardiovascular Phantoms: A Systematic Review of Applications, Technologies, and Validation.

    Get PDF
    Translation of imaging into 3-dimensional (3D) printed patient-specific phantoms (3DPSPs) can help visualize complex cardiovascular anatomy and enable tailoring of therapy. The aim of this paper is to review the entire process of phantom production, including imaging, materials, 3D printing technologies, and the validation of 3DPSPs. A systematic review of published research was conducted using Embase and MEDLINE, including studies that investigated 3DPSPs in cardiovascular medicine. Among 2,534 screened papers, 212 fulfilled inclusion criteria and described 3DPSPs as a valuable adjunct for planning and guiding interventions (n = 108 [51%]), simulation of physiological or pathological conditions (n = 19 [9%]), teaching of health care professionals (n = 23 [11%]), patient education (n = 3 [1.4%]), outcome prediction (n = 6 [2.8%]), or other purposes (n = 53 [25%]). The most common imaging modalities to enable 3D printing were cardiac computed tomography (n = 131 [61.8%]) and cardiac magnetic resonance (n = 26 [12.3%]). The printing process was conducted mostly by material jetting (n = 54 [25.5%]) or stereolithography (n = 43 [20.3%]). The 10 largest studies that evaluated the geometric accuracy of 3DPSPs described a mean bias <±1 mm; however, the validation process was very heterogeneous among the studies. Three-dimensional printed patient-specific phantoms are highly accurate, used for teaching, and applied to guide cardiovascular therapy. Systematic comparison of imaging and printing modalities following a standardized validation process is warranted to allow conclusions on the optimal production process of 3DPSPs in the field of cardiovascular medicine

    3D printing in cardiology: A review of applications and roles for advanced cardiac imaging

    Get PDF
    With the rate of cardiovascular diseases in the U.S increasing throughout the years, there is a need for developing more advanced treatment plans that can be tailored to specific patients and scenarios. The development of 3D printing is rapidly gaining acceptance into clinical cardiology. In this review, key technologies used in 3D printing are briefly summarized, particularly, the use of artificial intelligence (AI), open-source tools like MeshLab and MeshMixer, and 3D printing techniques such as fused deposition molding (FDM) and polyjet are reviewed. The combination of 3D printing, multiple image integration, and augmented reality may greatly enhance data visualization during diagnosis, treatment planning, and surgical procedures for cardiology

    Insights into 3D printing in medical applications

    Get PDF
    Three-dimensional (3D) printing has been increasingly used in the medical field with reported applications showing great value in assisting clinical decision-making and improving patient care (1-10). Patient-specific 3D printed models derived from medical imaging datasets, mainly from computed tomography (CT) and magnetic resonance imaging (MRI) are shown to play an important role in pre-surgical planning and simulation of complex surgical procedures, medical education and patient-doctor communication (1-14)

    3D Printing and Engineering Tools Relevant to Plan a Transcatheter Procedure

    Get PDF
    Advance cardiac imaging techniques such as three-dimensional (3D) printing technology and engineering tools have experienced a rapid development over the last decade in many surgical and interventional settings. In presence of complex cardiac and extra-cardiac anatomies, the creation of a physical, patient-specific model is useful to better understand the anatomical spatial relationships and formulate the best surgical or interventional plan. Although many case reports and small series have been published over this topic, at the present time, there is still a lack of strong scientific evidence of the benefit of 3D models and advance engineering tools, including virtual and augmented reality, in clinical practice and only qualitative evaluation of the models has been used to investigate their clinical use. Patient-specific 3D models can be printed in many different materials including rigid, flexible and transparent materials, depending on their application. To plan interventional procedure, transparent materials may be preferred in order to better evaluate the device or stent landing zone. 3D models can also be used as an input for augmented and virtual reality application and advance fluido-dynamic simulation, which aim to support the interventional cardiologist before entering the cath lab. The aim of this chapter is to present an overview on how 3D printing, extended reality platforms and the most common computational engineering methodologies"finite element and computational fluid dynamics"are currently used to support percutaneous procedures in congenital heart disease (CHD), with examples from the scientific literature

    Clinical Application of Three-dimensional Printing and Extended Reality in Congenital Heart Disease

    Get PDF
    This PhD study investigates the clinical role of the two emerging techniques, which are 3D printing and virtual reality, to improve the visualisation and surgical planning of congenital heart disease. This research findings show that both of these technologies can enhance the users’ perception on the spatial relationship of the heart structures and defects, and therefore improving the management of congenital heart disease
    corecore