48 research outputs found

    Mixed Noise Removal by Processing of Patches

    Get PDF
    Sonar images are degraded by mixed noise which has an adverse impact on detection and classification of underwater objects. Existing denoising methods of sonar images remove either additive noise or multiplicative noise. In this study, the mixed noise in sonar images, the additive Gaussian noise and the multiplicative speckle effect are handled by the data adaptive methods. A patch based denoising is applied in two phases to remove the additive Gaussian and multiplicative speckle noises. In the first phase, the adaptive processing of local patches is used to remove the additive Gaussian noise by exploiting the sonar image local sparsity. The PCA and SVD methods are used for denoising the noisy image patches and blocks of patches. In the second phase, the weighted maximum likelihood denoising of the nonlocal patches reduces the speckle effect by exploiting the non-local similarity in a probability distribution. Experiments on side scan sonar images are conducted and the results show the importance of removing both the additive and multiplicative components from the sonar images

    Image Restoration for Remote Sensing: Overview and Toolbox

    Full text link
    Remote sensing provides valuable information about objects or areas from a distance in either active (e.g., RADAR and LiDAR) or passive (e.g., multispectral and hyperspectral) modes. The quality of data acquired by remotely sensed imaging sensors (both active and passive) is often degraded by a variety of noise types and artifacts. Image restoration, which is a vibrant field of research in the remote sensing community, is the task of recovering the true unknown image from the degraded observed image. Each imaging sensor induces unique noise types and artifacts into the observed image. This fact has led to the expansion of restoration techniques in different paths according to each sensor type. This review paper brings together the advances of image restoration techniques with particular focuses on synthetic aperture radar and hyperspectral images as the most active sub-fields of image restoration in the remote sensing community. We, therefore, provide a comprehensive, discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to investigate the vibrant topic of data restoration by supplying sufficient detail and references. Additionally, this review paper accompanies a toolbox to provide a platform to encourage interested students and researchers in the field to further explore the restoration techniques and fast-forward the community. The toolboxes are provided in https://github.com/ImageRestorationToolbox.Comment: This paper is under review in GRS

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    비가우시안 잡음 영상 복원을 위한 그룹 희소 표현

    Get PDF
    학위논문(박사)--서울대학교 대학원 :자연과학대학 수리과학부,2020. 2. 강명주.For the image restoration problem, recent variational approaches exploiting nonlocal information of an image have demonstrated significant improvements compared with traditional methods utilizing local features. Hence, we propose two variational models based on the sparse representation of image groups, to recover images with non-Gaussian noise. The proposed models are designed to restore image with Cauchy noise and speckle noise, respectively. To achieve efficient and stable performance, an alternating optimization scheme with a novel initialization technique is used. Experimental results suggest that the proposed methods outperform other methods in terms of both visual perception and numerical indexes.영상 복원 문제에서, 영상의 비국지적인 정보를 활용하는 최근의 다양한 접근 방식은 국지적인 특성을 활용하는 기존 방법과 비교하여 크게 개선되었다. 따라서, 우리는 비가우시안 잡음 영상을 복원하기 위해 영상 그룹 희소 표현에 기반한 두 가지 변분법적 모델을 제안한다. 제안된 모델은 각각 코시 잡음과 스펙클 잡음 영상을 복원하도록 설계되었다. 효율적이고 안정적인 성능을 달성하기 위해, 교대 방향 승수법과 새로운 초기화 기술이 사용된다. 실험 결과는 제안된 방법이 시각적인 인식과 수치적인 지표 모두에서 다른 방법보다 우수함을 나타낸다.1 Introduction 1 2 Preliminaries 5 2.1 Cauchy Noise 5 2.1.1 Introduction 6 2.1.2 Literature Review 7 2.2 Speckle Noise 9 2.2.1 Introduction 10 2.2.2 Literature Review 13 2.3 GSR 15 2.3.1 Group Construction 15 2.3.2 GSR Modeling 16 2.4 ADMM 17 3 Proposed Models 19 3.1 Proposed Model 1: GSRC 19 3.1.1 GSRC Modeling via MAP Estimator 20 3.1.2 Patch Distance for Cauchy Noise 22 3.1.3 The ADMM Algorithm for Solving (3.7) 22 3.1.4 Numerical Experiments 28 3.1.5 Discussion 45 3.2 Proposed Model 2: GSRS 48 3.2.1 GSRS Modeling via MAP Estimator 50 3.2.2 Patch Distance for Speckle Noise 52 3.2.3 The ADMM Algorithm for Solving (3.42) 53 3.2.4 Numerical Experiments 56 3.2.5 Discussion 69 4 Conclusion 74 Abstract (in Korean) 84Docto

    Blind source separation for clutter and noise suppression in ultrasound imaging:review for different applications

    Get PDF
    Blind source separation (BSS) refers to a number of signal processing techniques that decompose a signal into several 'source' signals. In recent years, BSS is increasingly employed for the suppression of clutter and noise in ultrasonic imaging. In particular, its ability to separate sources based on measures of independence rather than their temporal or spatial frequency content makes BSS a powerful filtering tool for data in which the desired and undesired signals overlap in the spectral domain. The purpose of this work was to review the existing BSS methods and their potential in ultrasound imaging. Furthermore, we tested and compared the effectiveness of these techniques in the field of contrast-ultrasound super-resolution, contrast quantification, and speckle tracking. For all applications, this was done in silico, in vitro, and in vivo. We found that the critical step in BSS filtering is the identification of components containing the desired signal and highlighted the value of a priori domain knowledge to define effective criteria for signal component selection

    Thickness estimation, automated classification and novelty detection in ultrasound images of the plantar fascia tissues

    Get PDF
    The plantar fascia (PF) tissue plays an important role in the movement and the stability of the foot during walking and running. Thus it is possible for the overuse and the associated medical problems to cause injuries and some severe common diseases. Ultrasound (US) imaging offers significant potential in diagnosis of PF injuries and monitoring treatments. Despite the advantages of US, the generated PF images are difficult to interpret during medical assessment. This is partly due to the size and position of the PF in relation to the adjacent tissues. This limits the use of US in clinical practice and therefore impacts on patient services for what is a common problem and a major cause of foot pain and discomfort. It is therefore a requirement to devise an automated system that allows better and easier interpretation of PF US images during diagnosis. This study is concerned with developing a computer-based system using a combination of medical image processing techniques whereby different PF US images can be visually improved, segmented, analysed and classified as normal or abnormal, so as to provide more information to the doctors and the clinical treatment department for early diagnosis and the detection of the PF associated medical problems. More specifically, this study is required to investigate the possibility of a proposed model for localizing and estimating the PF thickness a cross three different sections (rearfoot, midfoot and forefoot) using a supervised ANN segmentation technique. The segmentation method uses RBF artificial neural network module in order to classify small overlapping patches into PF and non-PF tissue. Feature selection technique was performed as a post-processing step for feature extraction to reduce the number of the extracted features. Then the trained RBF-ANN is used to segment the desired PF region. The PF thickness was calculated using two different methods: distance transformation and a proposed area-length calculation algorithm. Additionally, different machine learning approaches were investigated and applied to the segmented PF region in order to distinguish between symptomatic and asymptomatic PF subjects using the best normalized and selected feature set. This aims to facilitate the characterization and the classification of the PF area for the identification of patients with inferior heel pain at risk of plantar fasciitis. Finally, a novelty detection framework for detecting the symptomatic PF samples (with plantar fasciitis disorder) using only asymptomatic samples is proposed. This model implies the following: feature analysis, building a normality model by training the one-class SVDD classifier using only asymptomatic PF training datasets, and computing novelty scores using the trained SVDD classifier, training and testing asymptomatic datasets, and testing symptomatic datasets of the PF dataset. The performance evaluation results showed that the proposed approaches used in this study obtained favourable results compared to other methods reported in the literature

    Plantar fascia segmentation and thickness estimation in ultrasound images

    Get PDF
    Ultrasound (US) imaging offers significant potential in diagnosis of plantar fascia (PF) injury and monitoring treatment. In particular US imaging has been shown to be reliable in foot and ankle assessment and offers a real-time effective imaging technique that is able to reliably confirm structural changes, such as thickening, and identify changes in the internal echo structure associated with diseased or damaged tissue. Despite the advantages of US imaging, images are difficult to interpret during medical assessment. This is partly due to the size and position of the PF in relation to the adjacent tissues. It is therefore a requirement to devise a system that allows better and easier interpretation of PF ultrasound images during diagnosis. This study proposes an automatic segmentation approach which for the first time extracts ultrasound data to estimate size across three sections of the PF (rearfoot, midfoot and forefoot). This segmentation method uses artificial neural network module (ANN) in order to classify small overlapping patches as belonging or not-belonging to the region of interest (ROI) of the PF tissue. Features ranking and selection techniques were performed as a post-processing step for features extraction to reduce the dimension and number of the extracted features. The trained ANN classifies the image overlapping patches into PF and non-PF tissue, and then it is used to segment the desired PF region. The PF thickness was calculated using two different methods: distance transformation and area-length calculation algorithms. This new approach is capable of accurately segmenting the PF region, differentiating it from surrounding tissues and estimating its thickness
    corecore