41 research outputs found

    Measuring Collagen Arrangement and Its Relationship with Preterm Birth using Mueller Matrix Polarimetry

    Get PDF
    Preterm birth (PTB) is defined as delivery prior to 37 weeks of gestation. It is the leading cause of infant death worldwide, responsible for infant neurological disorders, long-term cognitive impairment, as well as chronic health issues involving the auditory, visual, digestive, and respiratory systems. In expectant mothers, causes for PTB can include infection, inflammation, vascular disease, short intervals between pregnancies, multiple gestations and genetic factors. In the U.S., PTB occurs in over 11% of births and at an elevated 18.1% in Miami-Dade County, FL; while in the developing world the incidence of PB is over 15%. Early identification of at-risk pregnancies is important for the success of medical intervention. Current diagnosis methodologies of PTB include ultrasound imaging of cervical length and fetal fibronectin assay but have low positive predictive power. Compared to the markers targeted by current diagnosis methodologies, collagen content in the cervix changes more drastically throughout the course of gestation due to its link to changes in load bearing capacity that occur during the phases of pregnancy. Mueller matrix polarimetry is capable of characterizing changes in collagen without making contact with patients and may prove to be an improvement to current diagnosis methodologies. A clear difference is seen in collagen orientation between nonpregnant and pregnant patients. The development of a new imaging modality aimed at assessing early changes in collagen arrangement in the cervix may improve risk determination of PTB and reduce the morbidity of the condition. Earlier prediction of PTB could improve outcomes by allowing longer intervention times to prolong gestation time for the infant in the womb. A more reliable quantitative predictor may also lead to development of more treatment options

    Production and application of textile materials

    Get PDF
    This specialized publication is dedicated to technical and technological solutions in textile production. Engineering solutions in the production of fibers and fabrics for both technical and domestic use are considered. Particular attention in the book is given to the study of textile products for biomedical applications. Modern medical fabrics and fibers are used as dressing and suture material and significantly accelerate the recovery processes after surgical operations and burn injuries. Fibers and fabrics are currently often used as a reinforcing element in the production of various composite materials, which are often used in mechanical engineering and in the construction sector. A separate chapter is devoted to textile reinforcing materials. Environmental problems in textile production are mainly related to the dyeing process and the chemical treatment of fabrics and fibers. Some aspects of textile dyeing and wastewater treatment processes are also discussed in this publication. The book will be useful to specialists involved in textile production and related industries

    Efferent Modulation of Spontaneous Activity in Developing Sensory Systems

    Get PDF
    Patterned spontaneous activity plays an instructive role in developing sensory systems. Before hearing onset, inner support cells release ATP and induce spontaneous firing of neighboring inner hair cells. This periphery-initiated spontaneous activity propagates throughout the auditory hierarchy via the afferent pathway, coordinating neural activity in distinct tonotopic zones in the central auditory system. Similarly, spontaneous retinal waves initiated in the retina by starburst amacrine cells (stage II) or bipolar cells (stage III) were observed throughout the visual system via the retinotopic visual afferent circuits. Deciphering the underlying mechanisms of patterned spontaneous activity is critical to elucidate its instructive role in priming the developing nervous system prior to sensory experience. On the other hand, anatomical and functional evidence suggests that centrifugal efferent systems may contribute to neural dynamics before sensory inputs. In the first half of this study, we profiled spatiotemporal and correlational features of auditory spontaneous activity over the entire pre-hearing period. We discovered that the olivocochlear efferent system controlled the coupling strength of bilateral auditory spontaneous activity and demonstrated the profound impact of such modulation on the development of auditory functions. In the second half of this work, we introduced a novel experimental technique that enabled access to in situ retinal calcium dynamics in awake animals. We demonstrated in situ recordings of spontaneous retinal waves from distinct neuronal populations in the retina. Moreover, our result indicated that retinal activity was directly modulated by locomotion. Our approach is well suited to study retinopetal projections in vivo and whether they contributed to locomotion-related modulation on retinal dynamics. Together, these findings provide new perspectives on the functional roles of efferent modulations in shaping spontaneous activity and promoting the development of auditory and visual systems

    Acoustic and Elastic Waves: Recent Trends in Science and Engineering

    Get PDF
    The present Special Issue intends to explore new directions in the field of acoustics and ultrasonics. The interest includes, but is not limited to, the use of acoustic technology for condition monitoring of materials and structures. Topics of interest (among others): • Acoustic emission in materials and structures (without material limitation) • Innovative cases of ultrasonic inspection • Wave dispersion and waveguides • Monitoring of innovative materials • Seismic waves • Vibrations, damping and noise control • Combination of mechanical wave techniques with other types for structural health monitoring purposes. Experimental and numerical studies are welcome
    corecore