78 research outputs found

    Micro-Electro Discharge Machining: Principles, Recent Advancements and Applications

    Get PDF
    Micro electrical discharge machining (micro-EDM) is a thermo-electric and contactless process most suited for micro-manufacturing and high-precision machining, especially when difficult-to-cut materials, such as super alloys, composites, and electro conductive ceramics, are processed. Many industrial domains exploit this technology to fabricate highly demanding components, such as high-aspect-ratio micro holes for fuel injectors, high-precision molds, and biomedical parts.Moreover, the continuous trend towards miniaturization and high precision functional components boosted the development of control strategies and optimization methodologies specifically suited to address the challenges in micro- and nano-scale fabrication.This Special Issue showcases 12 research papers and a review article focusing on novel methodological developments on several aspects of micro electrical discharge machining: machinability studies of hard materials (TiNi shape memory alloys, Si3N4–TiN ceramic composite, ZrB2-based ceramics reinforced with SiC fibers and whiskers, tungsten-cemented carbide, Ti-6Al-4V alloy, duplex stainless steel, and cubic boron nitride), process optimization adopting different dielectrics or electrodes, characterization of mechanical performance of processed surface, process analysis, and optimization via discharge pulse-type discrimination, hybrid processes, fabrication of molds for inflatable soft microactuators, and implementation of low-cost desktop micro-EDM system

    Functional Ceramic Coatings

    Get PDF
    Ceramic materials in the form of coatings can significantly improve the functionality and applications of other engineering materials. Due to a wide range of controllable features and various deposition methods, it is possible to create tailored substrate–coating systems that meet the requirements of modern technologies. Therefore, it is crucial to understand the relationships between the structures, morphology and the properties of ceramic coatings and expand the base of scientific knowledge about them. This book contains a series of fourteen articles which present research on the production and properties of ceramic coatings designed to improve functionality for advanced applications

    The Application of Zeeko Polishing Technology to Freeform Femoral Knee Replacement Component Manufacture

    Get PDF
    The purpose of this study was to develop an advanced 7-axis Computer Numerical Controlled (CNC) Polishing Machine from its successful original application of industrial optics manufacture into a process for the manufacture of femoral knee components to improve wear characteristics and prolong component lifetimes. It was indentified that the successful manufacture of optical components using a corrective polishing procedure to enhance their performance could be applied to femoral knee implant components. Current femoral knee implants mimic the natural shape of the joint and are freeform (no axis of symmetry) in nature hence an advanced CNC polishing machine that can follow the contours associated with such shapes could improve surface finish and conformity of replacement femoral knee bearing surfaces, leading to improved performance. The process involved generating machine parameters that would optimize the polishing procedure to minimize wear of materials used in femoral knee implant manufacture. Secondly a design of a Non-Uniform Refind B-Spline (NURBS) model for control of the Polishing Machine over the freeform contours of the femoral component. Completing the process involved development of a corrective polishing process that would improve form control of the components. Such developments would improve surface finish and conformity which are well documented contributors to wear and hence the lifeline of orthopaedic implants. By the means of comparison of this technique to that of a conventional finishing technique using pin-on-plate disc testing it was concluded that performance of the CNC polished components was an improvement on that of the conventional technique. In the case of form control their were slight indications through small decreases in peak to valley (PV) error that the process helped reduce form error and could increase the lifetime of femoral knee replacement components. The overall study provided results that indicate the the Zeeko process could be used in the application of polishing of hard-on-hard material combinations to improve form control without compromising surface finish hence improving lifetimes of the implant. The results have their limitations in the fact that the wear test performance was only carried out on orthopaedic implant materials using a pin-on-plate wear test rig. Due to the time limitations on the thesis it can be said that further analysis of correcting form without compromising surface finish on entire implant systems under full joint simulator testing which would provide mre realistic contitions would a more definitive answer be achieved

    The environmentally assisted cracking of ru enriched laser alloyed surface layers on 304 L stainless steel

    Get PDF
    A dissertation submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering Johannesburg, 2018The use of austenitic stainless steels in harsh environments at elevated temperatures has increasingly become a global problem, these alloys can fail unpredictably when subjected to tensile stresses and chlorides. Hence the study was focused on understanding the environmentally assisted cracking of Ru enriched laser alloyed layers on 304L stainless steel in a corrosive environment at elevated temperatures. The Ru composition of laser alloyed samples was 0, 0.96, 1.96, 4.74 and 9.2 wt%. Microstructural analysis and microhardness measurements were performed in order to understand the grain orientation and resistance to indentation respectively. The bend beam SCC test was conducted by stressing the samples to 350 MPa and exposing them to 50 ppm sodium chloride with 10 ppm dissolved oxygen at 160°C for 172 hours. The results revealed a significant improvement in the SCC resistance. The samples with lower Ru content (0, 0.98 and 1.96 wt%) were less susceptible to SCC when compared to as-received 304L stainless steel. Cracks initiated from pits and propagated transgranularly on the alloyed layer. The crack growth rate decreased as the Ru content was increased. The samples with 4.74 and 9.2 wt% Ru were immune to SCC. Electrochemical test results showed improved corrosion resistance when the Ru level was increased to 1.96 wt%. Thereafter, there was a gradual increase in corrosion rates for samples with 4.74 and 9.2 wt% Ru. However, these corrosion rates were lower when compared to as-received 304L stainless steel. Another SCC test was conducted to investigate fractography of vacuum remelted samples alloyed with Ru. The results showed ductile failure for most of the samples and the maximum stress threshold of 580 MPa was archived on samples with 1.07 wt% Ru. There was a sudden increase in failure time, % elongation and % reduction in area when the Ru content was increased to 1.07 wt%. In essence, laser surface alloying 304L stainless steel with higher Ru content (more than 2wt%) improves SCC resistance, but does not improve the general corrosion resistance, therefore a careful selection for any application is necessary. However, the cost analysis revealed the laser surface alloying of 304L stainless steel with Ru to be more efficient over other corrosion resistant materials.MT 201

    Remanufacturing and Advanced Machining Processes for New Materials and Components

    Get PDF
    "Remanufacturing and Advanced Machining Processes for Materials and Components presents current and emerging techniques for machining of new materials and restoration of components, as well as surface engineering methods aimed at prolonging the life of industrial systems. It examines contemporary machining processes for new materials, methods of protection and restoration of components, and smart machining processes. • Details a variety of advanced machining processes, new materials joining techniques, and methods to increase machining accuracy • Presents innovative methods for protection and restoration of components primarily from the perspective of remanufacturing and protective surface engineering • Discusses smart machining processes, including computer-integrated manufacturing and rapid prototyping, and smart materials • Provides a comprehensive summary of state-of-the-art in every section and a description of manufacturing methods • Describes the applications in recovery and enhancing purposes and identifies contemporary trends in industrial practice, emphasizing resource savings and performance prolongation for components and engineering systems The book is aimed at a range of readers, including graduate-level students, researchers, and engineers in mechanical, materials, and manufacturing engineering, especially those focused on resource savings, renovation, and failure prevention of components in engineering systems.

    Remanufacturing and Advanced Machining Processes for New Materials and Components

    Get PDF
    Remanufacturing and Advanced Machining Processes for Materials and Components presents current and emerging techniques for machining of new materials and restoration of components, as well as surface engineering methods aimed at prolonging the life of industrial systems. It examines contemporary machining processes for new materials, methods of protection and restoration of components, and smart machining processes. • Details a variety of advanced machining processes, new materials joining techniques, and methods to increase machining accuracy • Presents innovative methods for protection and restoration of components primarily from the perspective of remanufacturing and protective surface engineering • Discusses smart machining processes, including computer-integrated manufacturing and rapid prototyping, and smart materials • Provides a comprehensive summary of state-of-the-art in every section and a description of manufacturing methods • Describes the applications in recovery and enhancing purposes and identifies contemporary trends in industrial practice, emphasizing resource savings and performance prolongation for components and engineering systems The book is aimed at a range of readers, including graduate-level students, researchers, and engineers in mechanical, materials, and manufacturing engineering, especially those focused on resource savings, renovation, and failure prevention of components in engineering systems

    Remanufacturing and Advanced Machining Processes for New Materials and Components

    Get PDF
    Remanufacturing and Advanced Machining Processes for Materials and Components presents current and emerging techniques for machining of new materials and restoration of components, as well as surface engineering methods aimed at prolonging the life of industrial systems. It examines contemporary machining processes for new materials, methods of protection and restoration of components, and smart machining processes. • Details a variety of advanced machining processes, new materials joining techniques, and methods to increase machining accuracy • Presents innovative methods for protection and restoration of components primarily from the perspective of remanufacturing and protective surface engineering • Discusses smart machining processes, including computer-integrated manufacturing and rapid prototyping, and smart materials • Provides a comprehensive summary of state-of-the-art in every section and a description of manufacturing methods • Describes the applications in recovery and enhancing purposes and identifies contemporary trends in industrial practice, emphasizing resource savings and performance prolongation for components and engineering systems The book is aimed at a range of readers, including graduate-level students, researchers, and engineers in mechanical, materials, and manufacturing engineering, especially those focused on resource savings, renovation, and failure prevention of components in engineering systems

    Remanufacturing and Advanced Machining Processes for New Materials and Components

    Get PDF
    "Remanufacturing and Advanced Machining Processes for Materials and Components presents current and emerging techniques for machining of new materials and restoration of components, as well as surface engineering methods aimed at prolonging the life of industrial systems. It examines contemporary machining processes for new materials, methods of protection and restoration of components, and smart machining processes. • Details a variety of advanced machining processes, new materials joining techniques, and methods to increase machining accuracy • Presents innovative methods for protection and restoration of components primarily from the perspective of remanufacturing and protective surface engineering • Discusses smart machining processes, including computer-integrated manufacturing and rapid prototyping, and smart materials • Provides a comprehensive summary of state-of-the-art in every section and a description of manufacturing methods • Describes the applications in recovery and enhancing purposes and identifies contemporary trends in industrial practice, emphasizing resource savings and performance prolongation for components and engineering systems The book is aimed at a range of readers, including graduate-level students, researchers, and engineers in mechanical, materials, and manufacturing engineering, especially those focused on resource savings, renovation, and failure prevention of components in engineering systems.

    Nanomaterials by severe plastic deformation: review of historical developments and recent advances

    Get PDF
    International audienceSevere plastic deformation (SPD) is effective in producing bulk ultrafine-grained and nanostructured materials with large densities of lattice defects. This field, also known as NanoSPD, experienced a significant progress within the past two decades. Beside classic SPD methods such as high-pressure torsion, equal-channel angular pressing, accumulative roll-bonding, twist extrusion, and multi-directional forging, various continuous techniques were introduced to produce upscaled samples. Moreover, numerous alloys, glasses, semiconductors, ceramics, polymers, and their composites were processed. The SPD methods were used to synthesize new materials or to stabilize metastable phases with advanced mechanical and functional properties. High strength combined with high ductility, low/room-temperature superplasticity, creep resistance, hydrogen storage, photocatalytic hydrogen production, photocatalytic CO2 conversion, superconductivity, thermoelectric performance, radiation resistance, corrosion resistance, and biocompatibility are some highlighted properties of SPD-processed materials. This article reviews recent advances in the NanoSPD field and provides a brief history regarding its progress from the ancient times to modernity
    corecore