9,138 research outputs found

    Neural Sensor Fusion for Spatial Visualization on a Mobile Robot

    Full text link
    An ARTMAP neural network is used to integrate visual information and ultrasonic sensory information on a B 14 mobile robot. Training samples for the neural network are acquired without human intervention. Sensory snapshots are retrospectively associated with the distance to the wall, provided by on~ board odomctry as the robot travels in a straight line. The goal is to produce a more accurate measure of distance than is provided by the raw sensors. The neural network effectively combines sensory sources both within and between modalities. The improved distance percept is used to produce occupancy grid visualizations of the robot's environment. The maps produced point to specific problems of raw sensory information processing and demonstrate the benefits of using a neural network system for sensor fusion.Office of Naval Research and Naval Research Laboratory (00014-96-1-0772, 00014-95-1-0409, 00014-95-0657

    From a Competition for Self-Driving Miniature Cars to a Standardized Experimental Platform: Concept, Models, Architecture, and Evaluation

    Full text link
    Context: Competitions for self-driving cars facilitated the development and research in the domain of autonomous vehicles towards potential solutions for the future mobility. Objective: Miniature vehicles can bridge the gap between simulation-based evaluations of algorithms relying on simplified models, and those time-consuming vehicle tests on real-scale proving grounds. Method: This article combines findings from a systematic literature review, an in-depth analysis of results and technical concepts from contestants in a competition for self-driving miniature cars, and experiences of participating in the 2013 competition for self-driving cars. Results: A simulation-based development platform for real-scale vehicles has been adapted to support the development of a self-driving miniature car. Furthermore, a standardized platform was designed and realized to enable research and experiments in the context of future mobility solutions. Conclusion: A clear separation between algorithm conceptualization and validation in a model-based simulation environment enabled efficient and riskless experiments and validation. The design of a reusable, low-cost, and energy-efficient hardware architecture utilizing a standardized software/hardware interface enables experiments, which would otherwise require resources like a large real-scale test track.Comment: 17 pages, 19 figues, 2 table

    Tahap penguasaan, sikap dan minat pelajar Kolej Kemahiran Tinggi MARA terhadap mata pelajaran Bahasa Inggeris

    Get PDF
    Kajian ini dilakukan untuk mengenal pasti tahap penguasaan, sikap dan minat pelajar Kolej Kemahiran Tinggi Mara Sri Gading terhadap Bahasa Inggeris. Kajian yang dijalankan ini berbentuk deskriptif atau lebih dikenali sebagai kaedah tinjauan. Seramai 325 orang pelajar Diploma in Construction Technology dari Kolej Kemahiran Tinggi Mara di daerah Batu Pahat telah dipilih sebagai sampel dalam kajian ini. Data yang diperoleh melalui instrument soal selidik telah dianalisis untuk mendapatkan pengukuran min, sisihan piawai, dan Pekali Korelasi Pearson untuk melihat hubungan hasil dapatan data. Manakala, frekuensi dan peratusan digunakan bagi mengukur penguasaan pelajar. Hasil dapatan kajian menunjukkan bahawa tahap penguasaan Bahasa Inggeris pelajar adalah berada pada tahap sederhana manakala faktor utama yang mempengaruhi penguasaan Bahasa Inggeris tersebut adalah minat diikuti oleh sikap. Hasil dapatan menggunakan pekali Korelasi Pearson juga menunjukkan bahawa terdapat hubungan yang signifikan antara sikap dengan penguasaan Bahasa Inggeris dan antara minat dengan penguasaan Bahasa Inggeris. Kajian menunjukkan bahawa semakin positif sikap dan minat pelajar terhadap pengajaran dan pembelajaran Bahasa Inggeris semakin tinggi pencapaian mereka. Hasil daripada kajian ini diharapkan dapat membantu pelajar dalam meningkatkan penguasaan Bahasa Inggeris dengan memupuk sikap positif dalam diri serta meningkatkan minat mereka terhadap Bahasa Inggeris dengan lebih baik. Oleh itu, diharap kajian ini dapat memberi panduan kepada pihak-pihak yang terlibat dalam membuat kajian yang akan datang

    Spatially augmented audio delivery: applications of spatial sound awareness in sensor-equipped indoor environments

    Get PDF
    Current mainstream audio playback paradigms do not take any account of a user's physical location or orientation in the delivery of audio through headphones or speakers. Thus audio is usually presented as a static perception whereby it is naturally a dynamic 3D phenomenon audio environment. It fails to take advantage of our innate psycho-acoustical perception that we have of sound source locations around us. Described in this paper is an operational platform which we have built to augment the sound from a generic set of wireless headphones. We do this in a way that overcomes the spatial awareness limitation of audio playback in indoor 3D environments which are both location-aware and sensor-equipped. This platform provides access to an audio-spatial presentation modality which by its nature lends itself to numerous cross-dissiplinary applications. In the paper we present the platform and two demonstration applications

    Learning to automatically detect features for mobile robots using second-order Hidden Markov Models

    Get PDF
    In this paper, we propose a new method based on Hidden Markov Models to interpret temporal sequences of sensor data from mobile robots to automatically detect features. Hidden Markov Models have been used for a long time in pattern recognition, especially in speech recognition. Their main advantages over other methods (such as neural networks) are their ability to model noisy temporal signals of variable length. We show in this paper that this approach is well suited for interpretation of temporal sequences of mobile-robot sensor data. We present two distinct experiments and results: the first one in an indoor environment where a mobile robot learns to detect features like open doors or T-intersections, the second one in an outdoor environment where a different mobile robot has to identify situations like climbing a hill or crossing a rock.Comment: 200

    Supporting Device Discovery and Spontaneous Interaction with Spatial References

    Get PDF
    The RELATE interaction model is designed to support spontaneous interaction of mobile users with devices and services in their environment. The model is based on spatial references that capture the spatial relationship of a user’s device with other co-located devices. Spatial references are obtained by relative position sensing and integrated in the mobile user interface to spatially visualize the arrangement of discovered devices, and to provide direct access for interaction across devices. In this paper we discuss two prototype systems demonstrating the utility of the model in collaborative and mobile settings, and present a study on usability of spatial list and map representations for device selection

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    Mobile Robot Sensor Fusion with Fuzzy ARTMAP

    Full text link
    The raw sensory input available to a mobile robot suffers from a variety of shortcomings. Sensor fusion can yield a percept more veridical than is available from any single sensor input. In this project, the fuzzy ARTMAP neural network is used to fuse sonar and visual sonar on a B14 mobile robot. The neural network learns to associate specific sensory inputs with a corresponding distance metric. Once trained, the network yields predictions of range to obstacles that are more accurate than those provided by either sensor type alone. This improvement in accuracy holds across all distances and angles of approach tested.Defense Advanced Research Projects Agency, Office of Naval Research, Navy Research Laboratory (ONR-00014-96-1-0772, ONR-00014-95-1-0409, ONR-00014-95-0657
    • …
    corecore