3,788 research outputs found

    IMPLEMENTASI METODE VIRTUAL FORCE FIELD UNTUK KONTROL PERGERAKAN AUTONOMOUS MOBILE ROBOT PADA APLIKASI SOCCER ROBOT

    Get PDF
    Virtual Force Field method is the one method which have simply concept but have a good ability to solve problem about obstacle avoidance. From the research that have done by Borenstein, Virtual Force Field is developed from the research that have done before that is Potential Field Method which work based on Histogram Grid. But it use Weight Value that different in any place which have obstacle. From the poorness that method, finally it can handled by Virtual Force Field method. In the Virtual Force Field method, an obstacle will represented as Repulsive Force and the target will represented as Attractive Force toward robot. Then the result from two force will be command in steering robot. To detect an obstacle that surrounds robot we use An Ultrasonic Sensor SRF 04 which work optimally up to 100 cm. For detect the object in front of robot we use Object Tracking method which use CMU Cam2 camera. In practically, we get an error resultant about 0.059% for the vector angle and 0.073% for the value of vector. Keyword : Virtual Force Field method, Obstacle Avoidance, Ultrasonic SRF 04, Object Tracking, CMU Cam2 camer

    A Model of Operant Conditioning for Adaptive Obstacle Avoidance

    Full text link
    We have recently introduced a self-organizing adaptive neural controller that learns to control movements of a wheeled mobile robot toward stationary or moving targets, even when the robot's kinematics arc unknown, or when they change unexpectedly during operation. The model has been shown to outperform other traditional controllers, especially in noisy environments. This article describes a neural network module for obstacle avoidance that complements our previous work. The obstacle avoidance module is based on a model of classical and operant conditioning first proposed by Grossberg ( 1971). This module learns the patterns of ultrasonic sensor activation that predict collisions as the robot navigates in an unknown cluttered environment. Along with our original low-level controller, this work illustrates the potential of applying biologically inspired neural networks to the areas of adaptive robotics and control.Office of Naval Research (N00014-95-1-0409, Young Investigator Award

    Implementation of Virtual Force Field Method for Movements Control Autonomous Mobile Robot in Soccer Robot Applications

    Get PDF
    Virtual Force Field method is the one method which have simply concept but have a good ability to solve problem about obstacle avoidance. From the research that have done by Borenstein, Virtual Force Field is developed from the research that have done before that is Potential Field Method which work based on Histogram Grid. But it use Weight Value that different in any place which have obstacle. From the poorness that method, finally it can handled by Virtual Force Field method. In the Virtual Force Field method, an obstacle will represented as Repulsive Force and the target will represented as Attractive Force toward robot. Then the result from two force will be command in steering robot. To detect an obstacle that surrounds robot we use An Ultrasonic Sensor SRF 04 which work optimally up to 100 cm. For detect the object in front of robot we use Object Tracking method which use CMU Cam2 camera. In practically, we get an error resultant about 0.059% for the vector angle and 0.073% for the value of vector

    Mobile forensic triage for damaged phones using M_Triage

    Get PDF
    Mobile forensics triage is a useful technique in a digital forensics investigation for recovering lost or purposely deleted and hidden files from digital storage. It is particularly useful, especially when solving a very sensitive crime, for example, kidnapping, in a timely manner. However, the existing mobile forensics triage tools do not consider performing a triage examination on damaged mobile phones. This research addressed the issues of performing triage examination on damaged Android mobile phones and reduction of false positive result generated by the current mobile forensics triage tools. Furthermore, the research addressed the issues of ignoring possible evidence residing in a bad block memory location. In this research a new forensics triage tool called M_Triage was introduced by extending Decode’s framework to handle data retrieval challenges on damaged Android mobile phones. The tool was designed to obtain evidence quickly and accurately (i.e. valid address book, call logs, SMS, images, and, videos, etc.) on Android damaged mobile phones. The tool was developed using C#, while back end engines was done using C programming and tested using five data sets. Based on the computational time processing comparison with Dec0de, Lifter, XRY and Xaver, the result showed that there was 75% improvement over Dec0de, 36% over Lifter, 28% over XRY and finally 71% over Xaver. Again, based on the experiment done on five data sets, M_Triage was capable of carving valid address book, call logs, SMS, images and videos as compared to Dec0de, Lifter, XRY and Xaver. With the average improvement of 90% over DEC0DE, 30% over Lifter, 40% over XRY and lastly 61% over Xaver. This shows that M_Triage is a better tool to be used because it saves time, carve more relevant files and less false positive result are achieved with the tool

    Mobile forensic triage for damaged phones using M_Triage

    Get PDF
    Mobile forensics triage is a useful technique in a digital forensics investigation for recovering lost or purposely deleted and hidden files from digital storage. It is particularly useful, especially when solving a very sensitive crime, for example, kidnapping, in a timely manner. However, the existing mobile forensics triage tools do not consider performing a triage examination on damaged mobile phones. This research addressed the issues of performing triage examination on damaged Android mobile phones and reduction of false positive result generated by the current mobile forensics triage tools. Furthermore, the research addressed the issues of ignoring possible evidence residing in a bad block memory location. In this research a new forensics triage tool called M_Triage was introduced by extending Decode’s framework to handle data retrieval challenges on damaged Android mobile phones. The tool was designed to obtain evidence quickly and accurately (i.e. valid address book, call logs, SMS, images, and, videos, etc.) on Android damaged mobile phones. The tool was developed using C#, while back end engines was done using C programming and tested using five data sets. Based on the computational time processing comparison with Dec0de, Lifter, XRY and Xaver, the result showed that there was 75% improvement over Dec0de, 36% over Lifter, 28% over XRY and finally 71% over Xaver. Again, based on the experiment done on five data sets, M_Triage was capable of carving valid address book, call logs, SMS, images and videos as compared to Dec0de, Lifter, XRY and Xaver. With the average improvement of 90% over DEC0DE, 30% over Lifter, 40% over XRY and lastly 61% over Xaver. This shows that M_Triage is a better tool to be used because it saves time, carve more relevant files and less false positive result are achieved with the tool

    Reflexive obstacle avoidance for kinematically-redundant manipulators

    Get PDF
    Dexterous telerobots incorporating 17 or more degrees of freedom operating under coordinated, sensor-driven computer control will play important roles in future space operations. They will also be used on Earth in assignments like fire fighting, construction and battlefield support. A real time, reflexive obstacle avoidance system, seen as a functional requirement for such massively redundant manipulators, was developed using arm-mounted proximity sensors to control manipulator pose. The project involved a review and analysis of alternative proximity sensor technologies for space applications, the development of a general-purpose algorithm for synthesizing sensor inputs, and the implementation of a prototypical system for demonstration and testing. A 7 degree of freedom Robotics Research K-2107HR manipulator was outfitted with ultrasonic proximity sensors as a testbed, and Robotics Research's standard redundant motion control algorithm was modified such that an object detected by sensor arrays located at the elbow effectively applies a force to the manipulator elbow, normal to the axis. The arm is repelled by objects detected by the sensors, causing the robot to steer around objects in the workspace automatically while continuing to move its tool along the commanded path without interruption. The mathematical approach formulated for synthesizing sensor inputs can be employed for redundant robots of any kinematic configuration

    Adaptive neuro-fuzzy technique for autonomous ground vehicle navigation

    Get PDF
    This article proposes an adaptive neuro-fuzzy inference system (ANFIS) for solving navigation problems of an autonomous ground vehicle (AGV). The system consists of four ANFIS controllers; two of which are used for regulating both the left and right angular velocities of the AGV in order to reach the target position; and other two ANFIS controllers are used for optimal heading adjustment in order to avoid obstacles. The two velocity controllers receive three sensor inputs: front distance (FD); right distance (RD) and left distance (LD) for the low-level motion control. Two heading controllers deploy the angle difference (AD) between the heading of AGV and the angle to the target to choose the optimal direction. The simulation experiments have been carried out under two different scenarios to investigate the feasibility of the proposed ANFIS technique. The simulation results have been presented using MATLAB software package; showing that ANFIS is capable of performing the navigation and path planning task safely and efficiently in a workspace populated with static obstacles

    Design and implementation of a real-time autonomous navigation system applied to lego robots

    Get PDF
    Teaching theoretical concepts of a real-time autonomous robot system may be a challenging task without real hardware support. The paper discusses the application of the Lego Robot for teaching multi interdisciplinary subjects to Mechatronics students. A real-time mobile robot system with perception using sensors, path planning algorithm, PID controller is used as the case to demonstrate the teaching methodology. The novelties are introduced compared to classical robotic classes: (i) the adoption of a project-based learning approach as teaching methodology; (ii) an effective real-time autonomous navigation approach for the mobile robot. However, the extendibility and applicability of the presented approach are not limited to only the educational purpose
    • …
    corecore