24 research outputs found

    Singlemode-Multimode-Singlemode Fiber Structures for Sensing Applications – A Review

    Get PDF
    A singlemode-multimode-singlemode (SMS) fiber structure consists of a short section of multimode fiber fusion-spliced between two SMS fibers. The mechanism underpinning the operation of an SMS fiber structure is multimode interference and associated self-imaging. SMS structures can be used in a variety of optical fiber systems but are most commonly used as sensors for a variety of parameters, ranging from macro-world measurands such as temperature, strain, vibration, flow rate, RI and humidity to the micro-world with measurands such as proteins, pathogens, DNA, and specific molecules. While traditional SMS structures employ a short section of standard multimode fiber, a large number of structures have been investigated and demonstrated over the last decade involving the replacement of the multimode fiber section with alternatives such as a hollow core fiber or a tapered fiber. The objective of replacing the multimode fiber has most often been to allow sensing of different measurands or to improve sensitivity. In this paper, several different categories of SMS fiber structures, including traditional SMS, modified SMS and tapered SMS fiber structures are discussed with some theoretical underpinning and reviews of a wide variety of sensing examples and recent advances. The paper then summarizes and compares the performances of a variety of sensors which have been published under a number of headings. The paper concludes by considering the challenges faced by SMS based sensing schemes in terms of their deployment in real world applications and discusses possible future developments of SMS fiber sensors

    Optical Fiber Interferometric Sensors

    Get PDF
    The contributions presented in this book series portray the advances of the research in the field of interferometric photonic technology and its novel applications. The wide scope explored by the range of different contributions intends to provide a synopsis of the current research trends and the state of the art in this field, covering recent technological improvements, new production methodologies and emerging applications, for researchers coming from different fields of science and industry. The manuscripts published in the Special issue, and re-printed in this book series, report on topics that range from interferometric sensors for thickness and dynamic displacement measurement, up to pulse wave and spirometry applications

    Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy

    Get PDF
    Waveguide-based cavity ring-down spectroscopy (CRD) can be used for quantitative measurements of chemical concentrations in small amounts of liquid, in gases or in films. The change in ring-down time can be correlated to analyte concentration when using fiber optic sensing elements that change their attenuation in dependence of either sample absorption or refractive index. Two types of fiber cavities, i.e., fiber loops and fiber strands containing reflective elements, are distinguished. Both types of cavities were coupled to a variety of chemical sensor elements, which are discussed and compared

    Novel microfluidic platforms incorporating photonic ring resonator sensors

    Get PDF
    corecore