112 research outputs found

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio

    Toward real-time control in future wireless networks: communication-control co-design

    Get PDF
    Wireless networks are undergoing a transition from connecting people to connecting things, which will allow human interaction with the physical world in a real-time fashion, for example, Tactile Internet, industrial automation, self-driving vehicles, and remote surgery. Therefore, future wireless networks need to support real-time control since it is the essential function enabling such emerging applications. In this article, some fundamental design capabilities needed to realize real-time control in future wireless networks are discussed, with primary emphasis given to communication-control because both communication and control systems have strong dynamics and interdependencies, and they tightly interact with each other. A case study is provided to demonstrate the necessity of such co-design

    Leveraging Intelligent Computation Offloading with Fog/Edge Computing for Tactile Internet: Advantages and Limitations

    Full text link
    [EN] With the recent advancement in wireless communication and networks, we are at the doorstep of the Tactile Internet. The Tactile Internet aims to enable the skill delivery and thereafter democratize the specialized skills for many emerging applications (e.g., remote medical, industrial machinery, remote robotics, autonomous driving). In this article, we start with the motivation of applying intelligent edge computing for computation offloading in the Tactile Internet. Afterward, we outline the main research challenges to leverage edge intelligence at the master, network, and controlled domain of the Tactile Internet. The key research challenges in the Tactile Internet lie in its stringent requirements such as ultra-low latency, ultra-high reliability, and almost zero service outage. We also discuss major entities in intelligent edge computing and their role in the Tactile Internet. Finally, several potential research challenges in edge intelligence for the Tactile Internet are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grant 61901128, and Agile Edge Intelligence for Delay Sensitive IoT (AgilE-IoT) project (Grant No. 9131-00119B) of Independent Research Fund Denmark (DFF).Mukherjee, M.; Guo, M.; Lloret, J.; Zhang, Q. (2020). Leveraging Intelligent Computation Offloading with Fog/Edge Computing for Tactile Internet: Advantages and Limitations. IEEE Network. 34(5):322-329. https://doi.org/10.1109/MNET.001.200000432232934

    5G Mobile Communications

    Get PDF
    This book provides a comprehensive overview of the emerging technologies for next-generation 5G mobile communications, with insights into the long-term future of 5G. Written by international leading experts on the subject, this contributed volume covers a wide range of technologies, research results, and networking methods. Key enabling technologies for 5G systems include, but are not limited to, millimeter-wave communications, massive MIMO technology and non-orthogonal multiple access. 5G will herald an even greater rise in the prominence of mobile access based upon both human-centric and machine-centric networks. Compared with existing 4G communications systems, unprecedented numbers of smart and heterogeneous wireless devices will be accessing future 5G mobile systems. As a result, a new paradigm shift is required to deal with challenges on explosively growing requirements in mobile data traffic volume (1000x), number of connected devices (10–100x), typical end-user data rate (10–100x), and device/network lifetime (10x). Achieving these ambitious goals calls for revolutionary candidate technologies in future 5G mobile systems. Designed for researchers and professionals involved with networks and communication systems, 5G Mobile Communications is a straightforward, easy-to-read analysis of the possibilities of 5G systems

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions

    Towards Enabling Critical mMTC: A Review of URLLC within mMTC

    Full text link

    A Revolution of Personalized Healthcare: Enabling Human Digital Twin with Mobile AIGC

    Full text link
    Mobile Artificial Intelligence-Generated Content (AIGC) technology refers to the adoption of AI algorithms deployed at mobile edge networks to automate the information creation process while fulfilling the requirements of end users. Mobile AIGC has recently attracted phenomenal attentions and can be a key enabling technology for an emerging application, called human digital twin (HDT). HDT empowered by the mobile AIGC is expected to revolutionize the personalized healthcare by generating rare disease data, modeling high-fidelity digital twin, building versatile testbeds, and providing 24/7 customized medical services. To promote the development of this new breed of paradigm, in this article, we propose a system architecture of mobile AIGC-driven HDT and highlight the corresponding design requirements and challenges. Moreover, we illustrate two use cases, i.e., mobile AIGC-driven HDT in customized surgery planning and personalized medication. In addition, we conduct an experimental study to prove the effectiveness of the proposed mobile AIGC-driven HDT solution, which shows a particular application in a virtual physical therapy teaching platform. Finally, we conclude this article by briefly discussing several open issues and future directions
    • …
    corecore