278 research outputs found

    Monolithically Integrated Multilayer Silicon Nitride-on-Silicon Waveguide Platforms for 3-D Photonic Circuits and Devices

    Get PDF
    In this paper, we review and provide additional details about our progress on multilayer silicon nitride (SiN)-on-silicon (Si) integrated photonic platforms. In these platforms, one or more SiN waveguide layers are monolithically integrated onto a Si photonic layer. This paper focuses on the development of three-layer platforms for the O- and SCL-bands for very large-scale photonic integrated circuits requiring hundreds or thousands of waveguide crossings. Low-loss interlayer transitions and ultralow-loss waveguide crossings have been demonstrated, along with bilevel and trilevel grating couplers for fiber-to-chip coupling. The SiN and Si passive devices have been monolithically integrated with high-efficiency optical modulators, photodetectors, and thermal tuners in a single photonic platform

    Wafer-level processing of ultralow-loss Si3N4

    Get PDF
    Photonic integrated circuits (PICs) are devices fabricated on a planar wafer that allow light generation, processing, and detection. Photonic integration brings important advantages for scaling up the complexity and functionality of photonic systems and facilitates their mass deployment in areas where large volumes and compact solutions are needed, e.g., optical interconnects. Among the material platforms available, silicon nitride (Si3N4) displays excellent optical properties such as broadband transparency, moderately high refractive index, and relatively strong nonlinearities. Indeed, Si3N4 integrated waveguides display ultralow-loss (few decibels per meter), which enables efficient light processing and nonlinear optics. Moreover, Si3N4 is compatible with standard complementary metal oxide semiconductor (CMOS) processing techniques,which facilitates the manufacture scalability required by mass deployment of PICs. However, the selection of a single photonic platform sets limitations to the device functionalities due to the intrinsic properties of the material and the fundamental limitation of optical waveguiding. Multilayer integration of different platforms can overcome the limitations encountered in a singleplatform PIC.This thesis presents the development of advanced techniques for the waferlevel manufacturing of ultralow-loss Si3N4 devices and approaches to enable their interface with active components like modulators and chip-scale comb sources (microcombs). The investigation covers the tailoring of a waveguide to the functionality required, the wafer-scale manufacturing of Si3N4, and how to overcome the limitations of a single platform on a wafer. These studies enable high-yield fabrication of microcombs, the integration of two Si3N4 platforms on the same wafer, and a strategy to efficiently couple to an integrated LiNbO3 layer to expand the chip functionality and scale up the complexity of the PIC

    Foundry-Enabled Scalable All-to-All Optical Interconnects Using Silicon Nitride Arrayed Waveguide Router Interposers and Silicon Photonic Transceivers

    Get PDF
    This paper summarizes our latest results of integrated all-to-all optical interconnect systems using compact, low-loss silicon nitride (SiN) arrayed waveguide grating router (AWGR) through AIM photonics' multiple-project-wafer services. In particular, we have designed, taped out, and initially characterized a chip-scale silicon photonic low-latency interconnect optical network switch (Si-LIONS) system with an 8 × 8 200 GHz spacing cyclic SiN AWGR, 64 microdisk modulators, and 64 on-chip germanium photodector (PD). The 8 × 8 SiN AWGR in design has a measured insertion loss of 1.8 dB and a crosstalk of -13 dB, with a footprint of 1.3 mm × 0.9 mm. We measured an error-free performance of the microdisk modulator at 10 Gb/s upon 1Vpp voltage swing. We demonstrated wavelength routing with error-free data transmission using the on-chip modulator, SiN AWGR, and an external PD. We have designed and taped out the optical interposer version of the all-to-all system using SiN waveguides and low-loss chip-to-interposer couplers. Finally, we illustrate our preliminary designs and results of 16 × 16 and 32 × 32 SiN AWGRs, and discuss the possibility of scaling beyond 1024 × 1024 all-to-all interconnections with reduced number of wavelengths (e.g., 64) using the Thin-CLOS architecture

    Ultralow-loss silicon nitride waveguides for nonlinear optics

    Get PDF
    The field of nonlinear optics relies on the interaction between high-intensity optical waves and nonlinear media. An integrated waveguide with large refractive index contrast allows to highly confine optical waves in a sub-μm^2 area, thus enhancing the optical intensity. However, such a high optical confinement increases the susceptibility to scattering losses induced from nanometer-level inhomogeneities.Silicon nitride is a dielectric material featuring a relatively large nonlinear-index coefficient and a broadband transparency window, from ultraviolet to mid-infrared. Its refractive index contrast to silica allows high confinement and controlling the dispersion with the waveguide geometry. This material platform has emerged in the past years as a workhorse for nonlinear optics applications that rely on the Kerr effect, from microcomb generation to parametric amplification. In this thesis work, we focused on the development of advanced manufacturing techniques for the realization of ultralow-loss silicon nitride waveguides. Meter long high-confinement waveguides with record low losses in the order of 1.4 dB/m and dispersion-engineered microresonators with quality factors of 19 million are reported. Based on this technology, we demonstrated octave-spanning coherent microcombs and microcombs with photodetectable repetition rates occupying a device area less than 1 mm^2, i.e., one order of magnitude smaller than state of the art. The high yield and ultralow-loss silicon nitride waveguides also allowed us to achieve, for the first time, continuous-wave parametric amplification in an integrated waveguide, with a demonstrated gain of 9.5 dB and noise figure of 1.2 dB when operated in phase-sensitive mode

    Open-access silicon photonics: current status and emerging initiatives

    Get PDF
    Silicon photonics is widely acknowledged as a game-changing technology driven by the needs of datacom and telecom. Silicon photonics builds on highly capital-intensive manufacturing infrastructure, and mature open-access silicon photonics platforms are translating the technology from research fabs to industrial manufacturing levels. To meet the current market demands for silicon photonics manufacturing, a variety of open-access platforms is offered by CMOS pilot lines, R&D institutes, and commercial foundries. This paper presents an overview of existing and upcoming commercial and noncommercial open-access silicon photonics technology platforms. We also discuss the diversity in these open-access platforms and their key differentiators

    Monolithically Integrated Multilayer Silicon Nitride-on-Silicon Waveguide Platforms for 3-D Photonic Circuits and Devices

    Get PDF
    In this paper, we review and provide additional details about our progress on multilayer silicon nitride (SiN)-on-silicon (Si) integrated photonic platforms. In these platforms, one or more SiN waveguide layers are monolithically integrated onto a Si photonic layer. This paper focuses on the development of three-layer platforms for the O- and SCL-bands for very large-scale photonic integrated circuits requiring hundreds or thousands of waveguide crossings. Low-loss interlayer transitions and ultralow-loss waveguide crossings have been demonstrated, along with bilevel and trilevel grating couplers for fiber-to-chip coupling. The SiN and Si passive devices have been monolithically integrated with high-efficiency optical modulators, photodetectors, and thermal tuners in a single photonic platform

    Harnessing optical micro-combs for microwave photonics

    Full text link
    In the past decade, optical frequency combs generated by high-Q micro-resonators, or micro-combs, which feature compact device footprints, high energy efficiency, and high-repetition-rates in broad optical bandwidths, have led to a revolution in a wide range of fields including metrology, mode-locked lasers, telecommunications, RF photonics, spectroscopy, sensing, and quantum optics. Among these, an application that has attracted great interest is the use of micro-combs for RF photonics, where they offer enhanced functionalities as well as reduced size and power consumption over other approaches. This article reviews the recent advances in this emerging field. We provide an overview of the main achievements that have been obtained to date, and highlight the strong potential of micro-combs for RF photonics applications. We also discuss some of the open challenges and limitations that need to be met for practical applications.Comment: 32 Pages, 13 Figures, 172 Reference

    The integration of InGaP LEDs with CMOS on 200 mm silicon wafers

    Get PDF
    The integration of photonics and electronics on a converged silicon CMOS platform is a long pursuit goal for both academe and industry. We have been developing technologies that can integrate III-V compound semiconductors and CMOS circuits on 200 mm silicon wafers. As an example we present our work on the integration of InGaP light-emitting diodes (LEDs) with CMOS. The InGaP LEDs were epitaxially grown on high-quality GaAs and Ge buffers on 200 mm (100) silicon wafers in a MOCVD reactor. Strain engineering was applied to control the wafer bow that is induced by the mismatch of coefficients of thermal expansion between III-V films and silicon substrate. Wafer bonding was used to transfer the foundry-made silicon CMOS wafers to the InGaP LED wafers. Process trenches were opened on the CMOS layer to expose the underneath III-V device layers for LED processing. We show the issues encountered in the 200 mm processing and the methods we have been developing to overcome the problems

    Integrated sources of photon quantum states based on nonlinear optics

    Get PDF
    The ability to generate complex optical photon states involving entanglement between multiple optical modes is not only critical to advancing our understanding of quantum mechanics but will play a key role in generating many applications in quantum technologies. These include quantum communications, computation, imaging, microscopy and many other novel technologies that are constantly being proposed. However, approaches to generating parallel multiple, customisable bi- and multi-entangled quantum bits (qubits) on a chip are still in the early stages of development. Here, we review recent developments in the realisation of integrated sources of photonic quantum states, focusing on approaches based on nonlinear optics that are compatible with contemporary optical fibre telecommunications and quantum memory infrastructures as well as with chip-scale semiconductor technology. These new and exciting platforms hold the promise of compact, low-cost, scalable and practical implementations of source s for the generation and manipulation of complex quantum optical states on a chip, which will play a major role in bringing quantum technologies out of the laboratory and into the real world
    • …
    corecore