2,022 research outputs found

    Nonreciprocal Metasurface with Space-Time Phase Modulation

    Full text link
    Creating materials with time-variant properties is critical for breaking reciprocity that imposes fundamental limitations to wave propagation. However, it is challenging to realize efficient and ultrafast temporal modulation in a photonic system. Here, leveraging both spatial and temporal phase manipulation offered by an ultrathin nonlinear metasurface, we experimentally demonstrated nonreciprocal light reflection at wavelengths around 860 nm. The metasurface, with traveling-wave modulation upon nonlinear Kerr building blocks, creates spatial phase gradient and multi-terahertz temporal phase wobbling, which leads to unidirectional photonic transitions in both momentum and energy spaces. We observed completely asymmetric reflections in forward and backward light propagations within a sub-wavelength interaction length of 150 nm. Our approach pointed out a potential means for creating miniaturized and integratable nonreciprocal optical components.Comment: 25 pages, 5 figure

    Epsilon-Near-Zero Al-Doped ZnO for Ultrafast Switching at Telecom Wavelengths: Outpacing the Traditional Amplitude-Bandwidth Trade-Off

    Full text link
    Transparent conducting oxides have recently gained great attention as CMOS-compatible materials for applications in nanophotonics due to their low optical loss, metal-like behavior, versatile/tailorable optical properties, and established fabrication procedures. In particular, aluminum doped zinc oxide (AZO) is very attractive because its dielectric permittivity can be engineered over a broad range in the near infrared and infrared. However, despite all these beneficial features, the slow (> 100 ps) electron-hole recombination time typical of these compounds still represents a fundamental limitation impeding ultrafast optical modulation. Here we report the first epsilon-near-zero AZO thin films which simultaneously exhibit ultra-fast carrier dynamics (excitation and recombination time below 1 ps) and an outstanding reflectance modulation up to 40% for very low pump fluence levels (< 4 mJ/cm2) at the telecom wavelength of 1.3 {\mu}m. The unique properties of the demonstrated AZO thin films are the result of a low temperature fabrication procedure promoting oxygen vacancies and an ultra-high carrier concentration. As a proof-of-concept, an all-optical AZO-based plasmonic modulator achieving 3 dB modulation in 7.5 {\mu}m and operating at THz frequencies is numerically demonstrated. Our results overcome the traditional "modulation depth vs. speed" trade-off by at least an order of magnitude, placing AZO among the most promising compounds for tunable/switchable nanophotonics.Comment: 14 pages, 9 figures, 1 tabl

    Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides

    Get PDF
    We describe the design of a silicon-based source for radiation in the 0.5-14 THz regime. This new class of devices will permit continuously tunable, milliwatt scale, cw, room temperature operation, a substantial advance over currently available technologies. Our silicon terahertz generator consists of a silicon waveguide for near-infrared radiation, contained within a metal waveguide for terahertz radiation. A nonlinear polymer cladding permits two near-infrared lasers to mix, and through difference-frequency generation produces terahertz output. The small dimensions of the design greatly increase the optical fields, enhancing the nonlinear effect. The design can also be used to detect terahertz radiation
    corecore