14,090 research outputs found

    Ultra Wideband Impulse Radio Systems with Multiple Pulse Types

    Full text link
    In an ultra wideband (UWB) impulse radio (IR) system, a number of pulses, each transmitted in an interval called a "frame", is employed to represent one information symbol. Conventionally, a single type of UWB pulse is used in all frames of all users. In this paper, IR systems with multiple types of UWB pulses are considered, where different types of pulses can be used in different frames by different users. Both stored-reference (SR) and transmitted-reference (TR) systems are considered. First, the spectral properties of a multi-pulse IR system with polarity randomization is investigated. It is shown that the average power spectral density is the average of the spectral contents of different pulse shapes. Then, approximate closed-form expressions for the bit error probability of a multi-pulse SR-IR system are derived for RAKE receivers in asynchronous multiuser environments. The effects of both inter-frame interference (IFI) and multiple-access interference (MAI) are analyzed. The theoretical and simulation results indicate that SR-IR systems that are more robust against IFI and MAI than a "conventional" SR-IR system can be designed with multiple types of ultra-wideband pulses. Finally, extensions to multi-pulse TR-IR systems are briefly described.Comment: To appear in the IEEE Journal on Selected Areas in Communications - Special Issue on Ultrawideband Wireless Communications: Theory and Application

    Iterative Interference Cancellation for Time Reversal Division Multiple Access

    Full text link
    Time Reversal (TR) has been proposed as a competitive precoding strategy for low-complexity devices, relying on ultra-wideband waveforms. This transmit processing paradigm can address the need for low power and low complexity receivers, which is particularly important for the Internet of Things, since it shifts most of the communications signal processing complexity to the transmitter side. Due to its spatio-temporal focusing property, TR has also been used to design multiple access schemes for multi-user communications scenarios. However, in wideband time-division multiple access schemes, the signals received by users suffer from significant levels of inter-symbol interference as well as interference from uncoordinated users, which often require additional processing at the receiver side. This paper proposes an iterative TR scheme that aims to reduce the level of interference in wideband multi-user settings, while keeping the processing complexity only at the transmitter side. The performance of the proposed TR-based protocol is evaluated using analytical derivations. In addition, its superiority over the conventional Time Reversal Division Multiple Access (TRDMA) scheme is demonstrated through simulations as well as experimental measurements at 2.52.5 GHz carrier frequency with variable bandwidth values.Comment: 7 pages, 8 figures, published in an IEEE Journa

    A joint multi user detection scheme for UWB sensor networks using waveform division multiple access

    Get PDF
    A joint multiuser detection (MUD) scheme for wireless sensor networks (WSNs) is proposed to suppress multiple access interference (MAI) caused by a large number of sensor nodes. In WSNs, waveform division multiple access ultra-wideband (WDMA-UWB) technology is well-suited for robust communications. Multiple sensor nodes are allowed to transmit modulated signals by sharing the same time periods and frequency bands using orthogonal pulse waveforms. This paper employs a mapping function based on the optimal multiuser detection (OMD) to map the received bits into the mapping space where error bits can be distinguished. In order to revise error bits caused by MAI, the proposed joint MUD scheme combines the mapping function with suboptimal algorithms. Numerical results demonstrate that the proposed MUD scheme provides good performances in terms of suppressing MAI and resisting near-far effect with low computational complexity

    Multi-carrier Ultra-Wideband multiple-access with good resilience against multiuser interference

    Get PDF
    Abstract - We propose a multi-carrier based multiple-access scheme for ultra-wideband (UWB) communications that is capable of deterministic removal of multiuser interference, irrespective of the users' multipath channels, in asynchronous mode. The receivers for different users have the same structure, except for a different mixer front-end. The maximum-likelihood receiver can be matched-filter based, with only the desired user's channel state information, and hence without the need for multiuser detection. Performance simulation shows significant improvement as compared with existing time-hopping spread spectrum UWB multiple access schemes

    Ultra wideband: applications, technology and future perspectives

    Get PDF
    Ultra Wide Band (UWB) wireless communications offers a radically different approach to wireless communication compared to conventional narrow band systems. Global interest in the technology is huge. This paper reports on the state of the art of UWB wireless technology and highlights key application areas, technological challenges, higher layer protocol issues, spectrum operating zones and future drivers. The majority of the discussion focuses on the state of the art of UWB technology as it is today and in the near future

    Ultra-wideband technology for short-range wireless communication

    Get PDF
    The ultra-wideband (UWB) radio core idea is to open large amounts of spectrum to a variety of users with little mutual interference between them. While ultra-wideband is being championed by several commercial companies, this technology has not followed the conventional path where commercial interest is preceded by years of academic research. This work attempts to fill in some of the gap by studying fundamental properties of communications with impulse-based radio UWB signals. We study jam resistance and capacity of UWB. Jam resistance is analyzed for binary pulse position modulation (PPM) with the interference being modeled as correlated Gaussian. Closed-form expressions are provided for the jam resistance of a PPM UWB system utilizing rectangular pulses. Simple approximations are obtained for special cases (narrowband interference). Such analysis is extended to other practical UWB waveforms such as Gaussian and Rayleigh monocycles. It is shown that under some conditions, the UWB jam resistance is superior to that of direct sequence spread spectrum (DS-SS). In the second part of this work, we study the capacity of the single-user UWB communication systems utilizing M-ary PPM and bi-phase as well as on-off keying modulation scheme over additive white Gaussian noise (AWGN) and multipath channels. Starting from the known capacity of M-ary modulated signals, the computation of UWB capacity over the AWGN channel takes into account UWB specific constraints. The constraints are the power spectrum density limitation under Federal Communications Commission (FCC) Part 15 rules and the spreading ratio required to achieve a specified jam resistance level. UWB capacity over AWGN channel is expressed as a function of spreading ratio and communication range. Trade-offs between capacity and range of communications and between capacity and spreading ratio are explored. We extend the study of capacity of UWB communications to the multipath channel using the modified S-V model proposed by the IEEE 802.15.3a task group. The complementary cumulative distribution function (CCDF) of the capacities, subject to the FCC power spectral density (PSD) limitation, are obtained for the all Rake (ARake) and selective Rake (SRake) receivers. In both of the cases, maximum ratio combining is employed. Finally, the capacity of multiple-access UWB communications is studied over the AWGN channel. Under certain assumptions, the multiple-access noise component at the receiver is modeled as Gaussian. An expression for the UWB capacity of the multiple-access channel is developed as a function of number of users

    Impulse Radio Systems with Multiple Types of Ultra-Wideband Pulses

    Full text link
    Spectral properties and performance of multi-pulse impulse radio ultra-wideband systems with pulse-based polarity randomization are analyzed. Instead of a single type of pulse transmitted in each frame, multiple types of pulses are considered, which is shown to reduce the effects of multiple-access interference. First, the spectral properties of a multi-pulse impulse radio system is investigated. It is shown that the power spectral density is the average of spectral contents of different pulse shapes. Then, approximate closed-form expressions for bit error probability of a multi-pulse impulse radio system are derived for RAKE receivers in asynchronous multiuser environments. The theoretical and simulation results indicate that impulse radio systems that are more robust against multiple-access interference than a "classical" impulse radio system can be designed with multiple types of ultra-wideband pulses.Comment: To be presented at the 2005 Conference on Information Sciences and System

    Multi Detector Fusion of Dynamic TOA Estimation using Kalman Filter

    Full text link
    In this paper, we propose fusion of dynamic TOA (time of arrival) from multiple non-coherent detectors like energy detectors operating at sub-Nyquist rate through Kalman filtering. We also show that by using multiple of these energy detectors, we can achieve the performance of a digital matched filter implementation in the AWGN (additive white Gaussian noise) setting. We derive analytical expression for number of energy detectors needed to achieve the matched filter performance. We demonstrate in simulation the validity of our analytical approach. Results indicate that number of energy detectors needed will be high at low SNRs and converge to a constant number as the SNR increases. We also study the performance of the strategy proposed using IEEE 802.15.4a CM1 channel model and show in simulation that two sub-Nyquist detectors are sufficient to match the performance of digital matched filter

    Performance of MB-OFDM UWB and WiMAX IEEE 802.16e converged radio-over-fiber in PON

    Get PDF
    Experimental results about the performance of converged radio-over- fiber transmission including multiband- OFDM UWB and WiMAX 802.16e wireless over a passive optical network are reported in this paper. The experimental study indicates that UWB and WiMAX converged transmission is feasible over the proposed distribution set-up employing a single wavelength. However, the results indicate that there is an EVM penalty of 3.2 dB for a UWB 10 km SSMF transmission in presence of WiMAX wireless
    • …
    corecore