32 research outputs found

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    Spectral Ranking in Complex Networks Using Memristor Crossbars

    Get PDF
    Various centrality measures have been proposed to identify the influence of each node in a complex network. Among the most popular ranking metrics, spectral measures stand out from the crowd. They rely on the computation of the dominant eigenvector of suitable matrices related to the graph: EigenCentrality, PageRank, Hyperlink Induced Topic Search (HITS) and Stochastic Approach for Link-Structure Analysis (SALSA). The simplest algorithm used to solve this linear algebra computation is the Power Method. It consists of multiple Matrix-Vector Multiplications (MVMs) and a normalization step to avoid divergent behaviours. In this work, we present an analog circuit used to accelerate the Power Iteration algorithm including current-mode termination for the memristor crossbars and a normalization circuit. The normalization step together with the feedback loop of the complete circuit ensure stability and convergence of the dominant eigenvector. We implement a transistor level peripheral circuitry around the memristor crossbar and take non-idealities such as wire parasitics, source driver resistance and finite memristor precision into account. We compute the different spectral centralities to demonstrate the performance of the system. We compare our results to the ones coming from the conventional digital computers and observe significant energy savings while maintaining a competitive accuracy

    Configurable Operational Amplifier Architectures Based on Oxide Resistive RAMs

    Get PDF
    International audienceThis paper introduces memristor-based operational amplifiers in which semiconductor resistors are suppressed and replaced by memristors. The ability of the memristive elements to hold several resistance states is exploited to design programmable closed-loop operational amplifiers. An inverting operational amplifier, an integrator and a differentiator are studied. Such designs are developed based on a calibrated memristor model, and offer dynamic configurability to realize different gains and corner frequencies at reduced chip area

    Phase Noise Analyses and Measurements in the Hybrid Memristor-CMOS Phase-Locked Loop Design and Devices Beyond Bulk CMOS

    Get PDF
    Phase-locked loop (PLLs) has been widely used in analog or mixed-signal integrated circuits. Since there is an increasing market for low noise and high speed devices, PLLs are being employed in communications. In this dissertation, we investigated phase noise, tuning range, jitter, and power performances in different architectures of PLL designs. More energy efficient devices such as memristor, graphene, transition metal di-chalcogenide (TMDC) materials and their respective transistors are introduced in the design phase-locked loop. Subsequently, we modeled phase noise of a CMOS phase-locked loop from the superposition of noises from its building blocks which comprises of a voltage-controlled oscillator, loop filter, frequency divider, phase-frequency detector, and the auxiliary input reference clock. Similarly, a linear time-invariant model that has additive noise sources in frequency domain is used to analyze the phase noise. The modeled phase noise results are further compared with the corresponding phase-locked loop designs in different n-well CMOS processes. With the scaling of CMOS technology and the increase of the electrical field, the problem of short channel effects (SCE) has become dominant, which causes decay in subthreshold slope (SS) and positive and negative shifts in the threshold voltages of nMOS and pMOS transistors, respectively. Various devices are proposed to continue extending Moore\u27s law and the roadmap in semiconductor industry. We employed tunnel field effect transistor owing to its better performance in terms of SS, leakage current, power consumption etc. Applying an appropriate bias voltage to the gate-source region of TFET causes the valence band to align with the conduction band and injecting the charge carriers. Similarly, under reverse bias, the two bands are misaligned and there is no injection of carriers. We implemented graphene TFET and MoS2 in PLL design and the results show improvements in phase noise, jitter, tuning range, and frequency of operation. In addition, the power consumption is greatly reduced due to the low supply voltage of tunnel field effect transistor

    New Possibilities In Low-voltage Analog Circuit Design Using Dtmos Transistors

    Get PDF
    (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2013(PhD) -- İstanbul Technical University, Institute of Science and Technology, 2013Bu çalışmada DTMOS yaklaşımı çok düşük besleme gerilimlerinde çalışan çok düşük güç tüketimli devrelere başarıyla uygulanmıştır. Tasarlanan devreler arasında OTA, OP-AMP, CCII gibi analog aktif yapı blokları, çarpma devresi, sadece-MOS yapılar gibi devreler bulunmaktadır. Tasarlanan devreler SPICE benzetimleri ile doğrulanmıştır. İleri yönde gövde kutuplamaya bağlı olarak DTMOS transistorun yapısından kaynaklanan, efektif olarak düşük eşik gerilimli çalışma özelliği nedeniyle, çok düşük güç tüketimli ve çok düşük gerilimli devrelerde DTMOS yaklaşımının geçerli bir alternatif olduğu bu çalışmayla gösterilmiştir. DTMOS yaklaşımının geniş bir alanda çeşitlilik gösteren analog devre yapılarında çok düşük besleme gerilimlerinde bile kabul edilebilir bir performansla kullanılabileceği bulunmuştur.In this study, DTMOS approach to the design of ultra low-voltage and ultra low-power analog circuits, has been successfully applied to the circuits ranging from EEG filtering circuits, speech processing filters in hearing aids, multipliers, analog active building blocks: OTA, OP-AMP, CCII to MOS-only circuits. The proposed circuits are verified with SPICE simulations. It is found that in designing ultra low-voltage, ultra low-power analog circuits, DTMOS approach is a viable alternative due to its inherent characteristic of effective low threshold voltage behaviour under forward body bias. This approach can be applied to several analog application subjects with acceptable performance under even ultra low supply voltages.DoktoraPh

    Neuromorphic Computing with Resistive Switching Devices.

    Full text link
    Resistive switches, commonly referred to as resistive memory (RRAM) devices and modeled as memristors, are an emerging nanoscale technology that can revolutionize data storage and computing approaches. Enabled by the advancement of nanoscale semiconductor fabrication and detailed understanding of the physical and chemical processes occurring at the atomic scale, resistive switches offer high speed, low-power, and extremely dense nonvolatile data storage. Further, the analog capabilities of resistive switching devices enables neuromorphic computing approaches which can achieve massively parallel computation with a power and area budget that is orders of magnitude lower than today’s conventional, digital approaches. This dissertation presents the investigation of tungsten oxide based resistive switching devices for use in neuromorphic computing applications. Device structure, fabrication, and integration are described and physical models are developed to describe the behavior of the devices. These models are used to develop array-scale simulations in support of neuromorphic computing approaches. Several signal processing algorithms are adapted for acceleration using arrays of resistive switches. Both simulation and experimental results are reported. Finally, guiding principles and proposals for future work are discussed.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116743/1/sheridp_1.pd

    Brain-Inspired Computing: Neuromorphic System Designs and Applications

    Get PDF
    In nowadays big data environment, the conventional computing platform based on von Neumann architecture encounters the bottleneck of the increasing requirement of computation capability and efficiency. The “brain-inspired computing” Neuromorphic Computing has demonstrated great potential to revolutionize the technology world. It is considered as one of the most promising solutions by achieving tremendous computing and power efficiency on a single chip. The neuromorphic computing systems represent great promise for many scientific and intelligent applications. Many designs have been proposed and realized with traditional CMOS technology, however, the progress is slow. Recently, the rebirth of neuromorphic computing is inspired by the development of novel nanotechnology. In this thesis, I propose neuromorphic computing systems with the ReRAM (Memristor) crossbar array. It includes the work in three major parts: 1) Memristor devices modeling and related circuits design in resistive memory (ReRAM) technology by investigating their physical mechanism, statistical analysis, and intrinsic challenges. A weighted sensing scheme which assigns different weights to the cells on different bit lines was proposed. The area/power overhead of peripheral circuitry was effectively reduced while minimizing the amplitude of sneak paths. 2) Neuromorphic computing system designs by leveraging memristor devices and algorithm scaling in neural network and machine learning algorithms based on the similarity between memristive effect and biological synaptic behavior. First, a spiking neural network (SNN) with a rate coding model was developed in algorithm level and then mapped to hardware design for supervised learning. In addition, to further speed and accuracy improvement, another neuromorphic system adopting analog input signals with different voltage amplitude and a current sensing scheme was built. Moreover, the use of a single memristor crossbar for each neural net- work layer was explored. 3) The application-specific optimization for further reliability improvement of the developed neuromorphic systems. In this thesis, the impact of device failure on the memristor-based neuromorphic computing systems for cognitive applications was evaluated. Then, a retraining and a remapping design in algorithm level and hardware level were developed to rescue the large accuracy loss

    Analog simulator of integro-differential equations with classical memristors

    Get PDF
    An analog computer makes use of continuously changeable quantities of a system, such as its electrical, mechanical, or hydraulic properties, to solve a given problem. While these devices are usually computationally more powerful than their digital counterparts, they suffer from analog noise which does not allow for error control. We will focus on analog computers based on active electrical networks comprised of resistors, capacitors, and operational amplifiers which are capable of simulating any linear ordinary differential equation. However, the class of nonlinear dynamics they can solve is limited. In this work, by adding memristors to the electrical network, we show that the analog computer can simulate a large variety of linear and nonlinear integro-differential equations by carefully choosing the conductance and the dynamics of the memristor state variable. To the best of our knowledge, this is the first time that circuits based on memristors are proposed for simulations. We study the performance of these analog computers by simulating integro-differential models related to fluid dynamics, nonlinear Volterra equations for population growth, and quantum models describing non-Markovian memory effects, among others. Finally, we perform stability tests by considering imperfect analog components, obtaining robust solutions with up to 13%13\% relative error for relevant timescales
    corecore