188 research outputs found

    0.3pA dark current and 0.65A/W responsivity 1020nm InGaAs/GaAs nano-ridge waveguide photodetector monolithically integrated on a 300-mm Si wafer

    Get PDF
    We report p-i-n InGaAs/GaAs multi-quantum well nano-ridge waveguide photodetectors monolithically integrated on a 300-mm Si wafer. The devices exhibit low dark currents of 0.3 pA ( 1.36×10 -7 A/cm 2 ) at -1 V bias and internal responsivities of 0.65A/W at 1020nm wavelength

    Multiphysics modelling of high-speed optoelectronic devices for silicon photonics platforms

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Recent progress in epitaxial growth of III-V quantum-dot lasers on silicon substrate

    Get PDF
    In the past few decades, numerous high-performance silicon (Si) photonic devices have been demonstrated. Si, as a photonic platform, has received renewed interest in recent years. Efficient Si-based III–V quantum-dot (QDs) lasers have long been a goal for semiconductor scientists because of the incomparable optical properties of III–V compounds. Although the material dissimilarity between III–V material and Si hindered the development of monolithic integrations for over 30 years, considerable breakthroughs happened in the 2000s. In this paper, we review recent progress in the epitaxial growth of various III–V QD lasers on both offcut Si substrate and on-axis Si (001) substrate. In addition, the fundamental challenges in monolithic growth will be explained together with the superior characteristics of QDs

    Development of high-performance, cost-effective quantum dot lasers for data-centre and Si photonics applications

    Get PDF
    Photonic technologies have been considered new methods to achieve high bandwidth data communication and transmission. Si-photonics was proposed to address the discrepancy between bulky photonic devices and advanced electronics and create high-density integrated photonics. One of the challenges is integrating all the components necessary for full-functionality photonic integrated circuits (PIC). Great efforts have been devoted to overcoming the inherent limitations of Group-IV materials to provide sufficient gain, efficient modulation and sensitive detections. Making Si the host material for efficient light emission poses the most stringent requirements and is the primary missing component in the Si-photonics platform. Incorporating III-V materials with the Si photonics platform and quantum dot (QD) structure is a promising solution to the problem of a fully-integrated and high-functioning PIC. High-performance QD lasers on III-V substrate or epitaxially on silicon have been developed in the last few decades with low threshold current density, low-temperature sensitivity, great reliability and large injection efficiency. Moreover, from the dynamic aspect, the intrinsic frequency of direct modulated laser and noise intensity is important for its applications in a data centre. QD is considered an alternative to quantum wells (QWs); however, the demonstrated QD laser has not fulfilled initial expectations, mainly due to its high gain compression and low differential gain. Another feature that needs to be noticed is feedback sensitivity, as the properties of semiconductor lasers are greatly degraded by reflection from external reflectors, such as the fibre connects and facets of integrated devices. QD devices are predicted to have stronger feedback resistance due to their large damping and small linewidth enhancement factor (LEF). These properties have attracted much research, and high-performance QD devices have been developed. In this thesis, we comprehensively investigated QD laser performance and applied our QD laser in the optical module instead of the commercial QW distributed feedback (DFB) laser. The background of Si photonics, the development of QD devices, and the fundamentals of QD lasers are presented in Chapter 1. The basic static and dynamic performances are demonstrated in Chapters 2 and 3. The GaAs-based QD laser provides a low threshold, high-temperature stability, and low noise operation with a limited small signal bandwidth. Chapter 4 provides a comprehensive study of the feedback resistance of the QD laser. The onset of coherence collapse is determined as -14 dB, verified by the static optical and electrical spectra and small signal response. Based on previous measurements, the QD laser is proven to be a high-performance, low-cost candidate for the Si-photonics module. In Chapter 5, the QD laser is used in practical applications, including a large signal transmission system with and without feedback and a commercial optical module. Although the intrinsic bandwidth of the QD laser is limited to around 5GHz due to the large damping and unoptimised capacitance, 30 Gbps data transmission has been demonstrated by a directly modulated QD laser. Large, high-speed signal modulation is achieved due to its high gain compression factor. Regarding the laser with intentional feedback, there is little degradation in the eye diagram under the whole feedback level up to -8dB. We also replaced the commercial QW DFB laser in 100G data-centre reach (DR)-1 optical module with our QD Fabry Perot (FP) laser without an isolator which gives a clear eye diagram under 53 Gbps 4-level pulse amplitude modulation (PAM4) with an extinction ratio (ER) of 4.7 dB. In conclusion, this thesis verifies the feasibility of adopting the QD laser as a light source for the Si-photonics module. The QD laser is selected over other lasers because of its low threshold, high-temperature stability and maximum operating temperature, and strong tolerance to unintentional feedback. This is the first project to measure critical feedback levels with different characteristics and to theoretically analyse the inconsistent value. More importantly, this thesis’ most original contribution is investigating the commercial applications of QD lasers in a Si-photonics module in an isolator-free state. In summary, the QD laser has been proven to be a feasible solution for the next-generation optical system

    Development of germanium/silicon integration for near infrared detection

    Get PDF
    Silicon (Si) is the base material for electronic technologies and is emerging as a very attractive platform for photonic integrated circuits (PICs). PICs allow optical systems to be made more compact with higher performance than discrete optical components. Applications for PICs are in the area of fibre-optic communication, biomedical devices, photovoltaics and imaging. Germanium (Ge), due to its suitable bandgap for telecommunications and its compatibility with Si technology is preferred over III-V compounds as an integrated on-chip detector at near infrared wavelengths. There are two main approaches for Ge/Si integration: through epitaxial growth and through direct wafer bonding. The lattice mismatch of ~4.2% between Ge and Si is the main problem of the former technique which leads to a high density of dislocations while the bond strength and conductivity of the interface are the main challenges of the latter. Both result in trap states which are expected to play a critical role. Understanding the physics of the interface is a key contribution of this thesis. This thesis investigates Ge/Si diodes using these two methods. The effects of interface traps on the static and dynamic performance of Ge/Si avalanche photodetectors have been modelled for the first time. The thesis outlines the original process development and characterization of mesa diodes which were fabricated by transferring a ~700 nm thick layer of p-type Ge onto n-type Si using direct wafer bonding and layer exfoliation. The effects of low temperature annealing on the device performance and on the conductivity of the interface have been investigated. It is shown that the diode ideality factor and the series resistance of the device are reduced after annealing. The carrier transport mechanism is shown to be dominated by generation–recombination before annealing and by direct tunnelling in forward bias and band-to-band tunnelling in reverse bias after annealing. The thesis presents a novel technique to realise photodetectors where one of the substrates is thinned by chemical mechanical polishing (CMP) after bonding the Si-Ge wafers. Based on this technique, Ge/Si detectors with remarkably high responsivities, in excess of 3.5 A/W at 1.55 μm at −2 V, under surface normal illumination have been measured. By performing electrical and optical measurements at various temperatures, the carrier transport through the hetero-interface is analysed by monitoring the Ge band bending from which a detailed band structure of the Ge/Si interface is proposed for the first time. The above unity responsivity of the detectors was explained by light induced potential barrier lowering at the interface. To our knowledge this is the first report of light-gated responsivity for vertically illuminated Ge/Si photodiodes. The wafer bonding approach followed by layer exfoliation or by CMP is a low temperature wafer scale process. In principle, the technique could be extended to other materials such as Ge on GaAs, or Ge on SOI. The unique results reported here are compatible with surface normal illumination and are capable of being integrated with CMOS electronics and readout units in the form of 2D arrays of detectors. One potential future application is a low-cost Si process-compatible near infrared camera

    Solution-processed semiconductors for next-generation photodetectors

    Get PDF
    Efficient light detection is central to modern science and technology.Current photodetectors mainly use photodiodes based on crystalline inorganic elementalsemiconductors, such as silicon, or compounds such as III–V semiconductors. Photodetectorsmade of solution-processed semiconductors — which include organic materials, metal-halideperovskites and quantum dots — have recently emerged as candidates for next-generation lightsensing. They combine ease of processing, tailorable optoelectronic properties, facile integrationwith complementary metal–oxide–semiconductors, compatibility with flexible substrates andgood performance. Here, we review the recent advances and the open challenges in the field ofsolution-processed photodetectors, examining the topic from both the materials and the deviceperspective and highlighting the potential of the synergistic combination of materials and deviceengineering. We explore hybrid phototransistorsand their potential to overcome trade-offsin noise, gain and speed, as well as the rapid advances in metal-halide perovskite photodiodesand their recent application in narrowband filterless photodetection
    • …
    corecore