3,628 research outputs found

    Flexible and stretchable electronics for wearable healthcare

    Get PDF
    Measuring the quality of human health and well-being is one of the key growth areas in our society. Preferably, these measurements are done as unobtrusive as possible. These sensoric devices are then to be integrated directly on the human body as a patch or integrated into garments. This requires the devices to be very thin, flexible and sometimes even stretchable. An overview will be given of recent technology developments in this domain and concrete application examples will be shown

    Active and passive component embedding into low-cost plastic substrates aimed at smart system applications

    Get PDF
    The technology development for a low-cost, roll-to-roll compatible chip embedding process is described in this paper. Target applications are intelligent labels and disposable sensor patches. Two generations of the technology are depicted. In the first version of the embedding technology, the chips are embedded in an adhesive layer between a copper foil and a PET film. While this results in a very thin (< 200 µm) and flexible system, the single-layer routing and the incompatibility with passive components restricts the application of this first generation. The double-sided circuitry embedding technology is an extension of the single-sided, foil-based chip embedding, where the PET film is replaced by a second metal foil. To obtain sufficient mechanical strength and to further reduce cost, the adhesive film is replaced by a substrate material which is compatible with the chip embedding concept. Both versions of the foil-based embedding technology are very versatile, as they are compatible with a broad range of polymer materials, for which the specifications can be tuned to the final application

    Humidity and temperature sensor system demonstrator with NFC tag for HySiF applications

    Get PDF
    Hybrid System-in-Foil (HySiF) is one of the emerging branches of flexible electronics in which ultra-thin silicon chips are integrated with flexible sensors in polymeric foils (Elsobky et al. 2018; Alavi et al. 2018). Intensive attention was given to the implementation of flexible environmental sensing platforms for logistics and food packaging (Cartasegna et al. 2011; Liu et al. 2016). The aim of this work is the implementation of a sensor system demonstrator using HySiF components, namely an ultra-thin microcontroller chip in addition to an on-chip temperature and an on-foil humidity sensors. The measurement concept for the relative humidity sensor is measuring the capacitance difference between an off-chip (on the foil substrate) humidity dependent sensor capacitor, and another humidity independent reference capacitor. The electrical readout technique is based on the charge amplifier switched capacitor circuit. It is implemented using a commercially available microcontroller (EM microelectronics EM6819) which has the advantage of being available as single chips to enable post-processing steps such as backthining and chip embedding in a thin polymer package. Sensor and reference capacitors are homogeneously integrated on-foil. 400 and 30 µm thick microcontroller dies (MCU) are used in this application. The charge amplifier result is digitized using an internal 10-bit analog-to-digital converter (ADC). The 10-bit ADC is time multiplexed between the charge amplifier structure and the internal temperature sensor. Linear interpolation is used to fit the digital output of the ADC and calibrate the output of the sensor system. Readings of the humidity level and the temperature are written to an NFC tag (from the company EM microelectronics based on chip EM NF4) using the contact interface. Readings can be accessed using a customized android application on a smartphone.</p

    Packaging technology enabling flexible optical interconnections

    Get PDF
    This paper reports on the latest trends and results on the integration of optical and opto-electronic devices and interconnections inside flexible carrier materials. Electrical circuits on flexible substrates are a very fast growing segment in electronics, but opto-electronics and optics should be able to follow these upcoming trends. This paper presents the back-thinning and packaging of single opto-electronic devices resulting in highly flexible and reliable packages. Optical waveguides and optical out-of-plane coupling structures are integrated inside the same layer stack, resulting in complete VCSEL-to-PD links with low total optical losses and high resistance to heat cycling and moisture exposure

    Assembly of optoelectronics for efficient chip-to-waveguide coupling

    Get PDF

    High yield fabrication process for 3D-stacked ultra-thin chip packages using photo-definable polyimide and symmetry in packages

    Get PDF
    Getting output of multiple chips within the volume of a single chip is the driving force behind development of this novel 3D integration technology, which has a broad range of industrial and medical electronic applications. This goal is achieved in a two-step approach. At first thinned dies are embedded in a polyimide interposer with a fine-pitch metal fan-out resulting Ultra-Thin Chip Packages (UTCP), next these UTCPs are stacked by lamination. Step height at the chip edge of these UTCPs is the major reason of die cracking during the lamination. This paper contains an approach to solve this issue by introduction of an additional layer of interposer which makes it flat at the chip edge and thus the whole packages is named as “Flat-UTCP”. In addition to that, randomness in non-functional package positions per panel reduces the overall yield of the whole process up to certain extent. A detailed analysis on these two issues to improve the process yield is presented in this paper. 3D-stacked memory module composed of 4 EEPROM dies was processed and tested to demonstrate this new concept for enhancing the fabrication yield

    Fully embedded optical and electrical interconnections in flexible foils

    Get PDF
    This paper presents the development of a technology platform for the full integration of opto-electronic and electronic components, as well as optical interconnections in a flexible foil. A technology is developed to embed ultra thin (20 ÎĽ m) VCSEL's and Photodiodes in layers of optical transparent material. These layers are sandwiched in between two Polyimide layers to get a flexible foil with a final stack thickness of 150 ÎĽ m. Optical waveguides are structured by photolithography in the optical layers and pluggable mirror components couple the light from the embedded opto-electronics in and out of the waveguides. Besides optical links and optoelectronic components, electrical circuitry is also embedded by means of embedded copper tracks and thinned down Integrated Circuits (20 ÎĽ m). Optical connection towards the outer world is realized by U-groove passive alignment coupling of optical fibers with the embedded waveguides

    Reliability analysis of foil substrate based integration of silicon chips

    Get PDF
    Flexible electronics has attracted significant attention in the recent past due to the booming wearables market in addition to the ever-increasing interest for faster, thinner and foldable mobile phones. Ultra-thin bare silicon ICs fabricated by thinning down standard ICs to thickness below 50 μm are flexible and therefore they can be integrated on or in polymer foils to create flexible hybrid electronic (FHE) components that could be used to replace rigid standard surface mount device (SMD) components. The fabricated FHE components referred as chip foil packages (CFPs) in this work are ideal candidates for FHE system integration owing to their ability to deliver high performance at low power consumption while being mechanically flexible. However, very limited information is available in the literature regarding the reliability of CFPs under static and dynamic bending. The lack of such vital information is a major obstacle impeding their commercialization. With the aim of addressing this issue, this thesis investigates the static and dynamic bending reliability of CFPs. In this scope, the static bending reliability of CFPs has been investigated in this thesis using flexural bending tests by measuring their fracture strength. Then, Finite Element Method (FEM) simulations have been implemented to calculate the fracture stress of ultra-thin flexible silicon chips where analytical formulas may not be applied. After calculating the fracture stress from FEM simulations, the enhancement in robustness of ultra-thin chips (UTCs) against external load has also been proved and quantified with further experimental investigations. Besides, FEM simulations have also been used to analyse the effect of Young’s Modulus of embedding materials on the robustness of the embedded UTCs. Furthermore, embedding the UTCs in polymer layers has also been experimentally proven to be an effective solution to reduce the influence of thinning and dicing induced damages on the robustness of the embedded UTCs. Traditional interconnection techniques such as wire bonding may not be implemented to interconnect ultra-thin silicon ICs owing to the high mechanical forces involved in the processes that would crack the chips. Therefore, two novel interconnection methods namely (i) flip-chip bonding with Anisotropic Conductive Adhesive (ACA) and (ii) face-up direct metal interconnection have been implemented in this thesis to interconnect ultra-thin silicon ICs to the corresponding interposer patterns on foil substrates. The CFP samples thus fabricated were then used for the dynamic bending reliability investigations. A custom-built test equipment was developed to facilitate the dynamic bending reliability investigations of CFPs. Experimental investigations revealed that the failure of CFPs under dynamic bending was caused mainly by the cracking of the redistribution layer (RDL) interconnecting the chip and the foil. Furthermore, it has also been shown that the CFPs are more vulnerable to repeated compressive bending than to repeated tensile bending. Then, the influence of dimensional factors such as the thickness of the chip as well as the RDL on the dynamic bending reliability of CFPs have also been studied. Upon identifying the plausible cause behind the cracking of the RDL leading to the failure of the CFPs, two methods to improve the dynamic bending reliability of the RDL have been suggested and demonstrated with experimental investigations. The experimental investigations presented in this thesis adds some essential information to the state-of-the-art concerning the static and the dynamic bending reliability of UTCs integrated in polymer foils that are not yet available in the literature and aids to establish in-depth knowledge of mechanical reliability of the components required for manufacturing future FHE systems. The strategies devised to enhance the robustness of UTCs and CFPs could serve as guidelines for fabricating reliable FHE components and systems

    Flexible and stretchable circuit technologies for space applications

    Get PDF
    Flexible and stretchable circuit technologies offer reduced volume and weight, increased electrical performance, larger design freedom and improved interconnect reliability. All of these advantages are appealing for space applications. In this paper, two example technologies, the ultra-thin chip package (UTCP) and stretchable moulded interconnect (SMI), are described. The UTCP technology results in a 60 µm thick chip package, including the embedding of a 20 µm thick chip, laser or protolithic via definition to the chip contacts and application of fan out metallization. Imec’s stretchable interconnect technology is inspired by conventional rigid and flexible printed circuit board (PCB) technology. Stretchable interconnects are realized by copper meanders supported by a flexible material e.g. polyimide. Elastic materials, predominantly silicone rubbers, are used to embed the conductors and the components, thus serving as circuit carrier. The possible advantages of these technologies with respect to space applications are discussed

    Modeling of CMOS devices and circuits on flexible ultrathin chips

    Get PDF
    The field of flexible electronics is rapidly evolving. The ultrathin chips are being used to address the high-performance requirements of many applications. However, simulation and prediction of changes in response of device/circuit due to bending induced stress remains a challenge as of lack of suitable compact models. This makes circuit designing for bendable electronics a difficult task. This paper presents advances in this direction, through compressive and tensile stress studies on transistors and simple circuits such as inverters with different channel lengths and orientations of transistors on ultrathin chips. Different designs of devices and circuits in a standard CMOS 0.18-ÎĽm technology were fabricated in two separated chips. The two fabricated chips were thinned down to 20 ÎĽm using standard dicing-before-grinding technique steps followed by post-CMOS processing to obtain sufficient bendability (20-mm bending radius, or 0.05% nominal strain). Electrical characterization was performed by packaging the thinned chip on a flexible substrate. Experimental results show change of carrier mobilities in respective transistors, and switching threshold voltage of the inverters during different bending conditions (maximum percentage change of 2% for compressive and 4% for tensile stress). To simulate these changes, a compact model, which is a combination of mathematical equations and extracted parameters from BSIM4, has been developed in Verilog-A and compiled into Cadence Virtuoso environment. The proposed model predicts the mobility variations and threshold voltage in compressive and tensile bending stress conditions and orientations, and shows an agreement with the experimental measurements (1% for compressive and 0.6% for tensile stress mismatch)
    • …
    corecore