4,470 research outputs found

    Mid-Infrared nonlinear silicon photonics

    Get PDF
    Recently there has been a growing interest in mid-infrared (mid-IR) photonic technology with a wavelength of operation approximately from 2-14 mu m. Among several established mid-IR photonic platforms, silicon nanophotonic platform could potentially offer ultra-compact, and monolithically integrated mid-IR photonic devices and device arrays, which could have board impact in the mid-IR technology, such as molecular spectroscopy, and imaging. At room temperature, silicon has a bandgap similar to 1.12 eV resulting in vanishing two-photon absorption (TPA) for mid-IR wavelengths beyond 2.2 mu m, which, coupled with silicon's large nonlinear index of refraction and its strong waveguide optical confinement, enables efficient nonlinear processes in the mid-IR. By taking advantage of these nonlinear processes and judicious dispersion engineering in silicon waveguides, we have recently demonstrated a handful of silicon mid-IR nonlinear components, including optical parametric amplifiers (OPA), broadband sources, and a wavelength translator. Silicon nanophotonic waveguide's anomalous dispersion design, providing four-wave-mixing (FWM) phase-matching, has enabled the first demonstration of silicon mid-IR optical parametric amplifier (OPA) with a net off-chip gain exceeding 13 dB. In addition, reduction of propagation losses and balanced second and fourth order waveguide dispersion design led to an OPA with an extremely broadband gain spectrum from 1.9-2.5 mu m and > 50 dB parametric gain, upon which several novel silicon mid-IR light sources were built, including a mid-IR optical parametric oscillator, and a supercontinuum source. Finally, a mid-IR wavelength translation device, capable of translating signals near 2.4 mu m to the telecom-band near 1.6 mu m with simultaneous 19 dB gain, was demonstrated

    Electrically packaged silicon-organic hybrid (SOH) I/Q-modulator for 64 GBd operation

    Get PDF
    Silicon-organic hybrid (SOH) electro-optic (EO) modulators combine small footprint with low operating voltage and hence low power dissipation, thus lending themselves to on-chip integration of large-scale device arrays. Here we demonstrate an electrical packaging concept that enables high-density radio-frequency (RF) interfaces between on-chip SOH devices and external circuits. The concept combines high-resolution Al2O3\mathrm{Al_2O_3} printed-circuit boards with technically simple metal wire bonds and is amenable to packaging of device arrays with small on-chip bond pad pitches. In a set of experiments, we characterize the performance of the underlying RF building blocks and we demonstrate the viability of the overall concept by generation of high-speed optical communication signals. Achieving line rates (symbols rates) of 128 Gbit/s (64 GBd) using quadrature-phase-shiftkeying (QPSK) modulation and of 160 Gbit/s (40 GBd) using 16-state quadrature-amplitudemodulation (16QAM), we believe that our demonstration represents an important step in bringing SOH modulators from proof-of-concept experiments to deployment in commercial environments

    Tapered photonic crystal microcavities embedded in photonic wire waveguides with large resonance quality-factor and high transmission

    Get PDF
    We present the design, fabrication, and characterization of a microcavity that exhibits simultaneously high transmission and large resonance quality-factor (Q-factor). This microcavity is formed by a single-row photonic crystal (PhC) embedded in a 500-nm-wide photonic wire waveguide - and is based on silicon-on-insulator. A normalized transmission of 85%, together with a Q-factor of 18 500, have been achieved experimentally through the use of carefully designed tapering on both sides of each of the hole-type PhC mirrors that form the microcavity. We have also demonstrated reasonably accurate control of the cavity resonance frequency. Simulation of the device using a three-dimensional finite-difference time-domain approach shows good agreement with the experimental results

    Silicon-on-insulator photonic crystal miniature devices with slow light enhanced third-order nonlinearities

    Get PDF
    The effects of the slow-down factor on third-order nonlinear effects in silicon-on-insulator photonic crystal channel waveguides were investigated. In the slow light regime, with a group index equal to 99, these nonlinear effects are enhanced but the enhancement produced depends on the input peak power level. Simulations indicate the possibility of soliton-like propagation of 1 ps pulses at an input peak power level of 50 mW inside such a photonic crystal waveguide. The increase in the induced phase shift produced by lower group velocities can be used to decrease the size and power requirements needed to operate devices such as optical switches, logic gates, and wavelength translators

    High-Q photonic crystal nanocavities on 300 mm SOI substrate fabricated with 193 nm immersion lithography

    Get PDF
    On-chip 1-D photonic crystal nanocavities were designed and fabricated in a 300 mm silicon-on-insulator wafer using a CMOS-compatible process with 193 nm immersion lithography and silicon oxide planarization. High quality factors up to 10(5) were achieved. By changing geometrical parameters of the cavities, we also demonstrated a wide range of wavelength tunability for the cavity mode, a low insertion loss and excellent agreement with simulation results. These on-chip nanocavities with high quality factors and low modal volume, fabricated through a high-resolution and high-volume CMOS compatible platform open up new opportunities for the photonic integration community

    Overview of the EU FP7-project HISTORIC

    Get PDF
    HISTORIC aims to develop and test complex photonic integrated circuits containing a relatively large number of digital photonic elements for use in e.g. all-optical packet switching. These photonic digital units are all-optical flip-flops based on ultra compact laser diodes, such as microdisk lasers and photonic crystal lasers. These lasers are fabricated making use of the heterogeneous integration of InP membranes on top of silicon on insulator (SOI) passive optical circuits. The very small dimensions of the lasers are, at least for some approaches, possible because of the high index contrast of the InP membranes and by making use of the extreme accuracy of CMOS processing. All-optical flip-flops based on heterogeneously integrated microdisk lasers with diameter of 7.5 mu m have already been demonstrated. They operate with a CW power consumption of a few mW and can switch in 60ps with switching energies as low as 1.8 fJ. Their operation as all-optical gate has also been demonstrated. Work is also on-going to fabricate heterogeneously integrated photonic crystal lasers and all-optical flip-flops based on such lasers. A lot of attention is given to the electrical pumping of the membrane InP-based photonic crystal lasers and to the coupling to SOI wire waveguides. Optically pumped photonic crystal lasers coupled to SOI wires have been demonstrated already. The all-optical flip-flops and gates will be combined into more complex photonic integrated circuits, implementing all-optical shift registers, D flip-flops, and other all-optical switching building blocks. The possibility to integrate a large number of photonic digital units together, but also to integrate them with compact passive optical routers such as AWGs, opens new perspectives for the design of integrated optical processors or optical buffers. The project therefore also focuses on designing new architectures for such optical processing or buffer chips

    All-optical switching using nonlinear subwavelength Mach-Zehnder on silicon

    Get PDF
    We report on the experimental demonstration of ultrafast all-optical switching and wavelength down-conversion based on a novel nonlinear Mach-Zehnder interferometer with subwavelength grating and wire waveguides. Unlike other periodic waveguides such as line-defects in a 2D photonic crystal lattice, a subwavelength grating waveguide confines the light as a conventional index-guided structure and does not exhibit optically resonant behaviour. Since the device had no dedicated port to input optical signal to control switching a new approach was also implemented for all-optical switching control
    corecore