1,136 research outputs found

    Study of the Strategy of Energy Harvester Pattern Besides the Influence Preparing Journey

    Get PDF
    Energy gathering is beautiful capability of inspection currently subsequently the whole creation is observing aimed on green energy in technique of a foundation. This everyday defines the method of energy harvester beautification similarly the effect preparing journey. The optimization of extracted effect available of the piezoelectric piece has been available. The gathering of electrical energy next different delivery is practical arranged the strategies composed general the grounding of conservative strain previously ambient pounding depends upon countless properties such concluded technique of amount of piezoelectric transducers, electromechanical connection continuous of the piezoelectric sensors, amount of volume applied, and likewise obvious the scheme of preparation. Energy harvester pounded glass consumes been intended with certain inferior quality piezoelectric diaphragms which continue secondhand predominant indications. A working method consumes been available immediate confinement the generated energy through dedicated IC and boosts it finished a converter near become regulated output aimed at charging the batteries of smart phones. The whole charge cycle has been studied aimed at the developed system. The simulation and experimental educations have been efficiently carried out. The model design and testing remained innocently aimed at studying the energy generation besides apprehending phenomenon in an effective manner. It can be implemented immediate generate large power through suitably as the several factors mentioned above and applying it happening the great scale

    Harvesting Ultra-Low Power Wireless Signals in the GHz Range

    Get PDF
    We present methods for harvesting wireless energy as low as -30 dBm (1uW) from the 2.4 GHz frequency range (e.g. WiFi signals) with discrete components. We have constructed a proof-of-concept device which is capable of operating at -18.8 dBm (13.2 uW) with no onboard power sources, relying solely on the 2.4 GHz energy source. The device is constructed on a PCB and consists of an impedance matching network, a rectifier, and a DC-DC converter. The impedance matching network matches a 2.4 GHz 50 Ohm input source to the high impedance rectifier and provides a passive boost. The rectifier converts the AC signal from the impedance matching network to a DC signal. This DC signal feeds into the DC-DC converter subsystem which boosts the voltage from about 45 mV DC to a clean 95 mV DC output

    In-Body Energy Harvesting Power Management Interface for Post Heart Transplantation Monitoring

    Get PDF
    Deep tissue energy harvesters are of increasing interest in the development of battery-less implantable devices. This paper presents a fully integrated ultra-low quiescent power management interface. It has power optimization and impedance matching between a piezoelectric energy harvester and the functional load that could be potentially powered by the heart's mechanical motions. The circuit has been designed in 0.18-µm CMOS technology. It dissipates 189.8 nW providing two voltage outputs of 1.4 V and 4.2 V. The simulation results show an output power 8.2x times of an ideal full-bridge rectifier without an external power supply. The design has the potential for use in self-powered heart implantable devices as it is capable providing stable output voltages from a cold startup

    Advanced Energy Harvesting Technologies

    Get PDF
    Energy harvesting is the conversion of unused or wasted energy in the ambient environment into useful electrical energy. It can be used to power small electronic systems such as wireless sensors and is beginning to enable the widespread and maintenance-free deployment of Internet of Things (IoT) technology. This Special Issue is a collection of the latest developments in both fundamental research and system-level integration. This Special Issue features two review papers, covering two of the hottest research topics in the area of energy harvesting: 3D-printed energy harvesting and triboelectric nanogenerators (TENGs). These papers provide a comprehensive survey of their respective research area, highlight the advantages of the technologies and point out challenges in future development. They are must-read papers for those who are active in these areas. This Special Issue also includes ten research papers covering a wide range of energy-harvesting techniques, including electromagnetic and piezoelectric wideband vibration, wind, current-carrying conductors, thermoelectric and solar energy harvesting, etc. Not only are the foundations of these novel energy-harvesting techniques investigated, but the numerical models, power-conditioning circuitry and real-world applications of these novel energy harvesting techniques are also presented

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    Wireless power transmission: R&D activities within Europe

    Get PDF
    Wireless power transmission (WPT) is an emerging technology that is gaining increased visibility in recent years. Efficient WPT circuits, systems and strategies can address a large group of applications spanning from batteryless systems, battery-free sensors, passive RF identification, near-field communications, and many others. WPT is a fundamental enabling technology of the Internet of Things concept, as well as machine-to-machine communications, since it minimizes the use of batteries and eliminates wired power connections. WPT technology brings together RF and dc circuit and system designers with different backgrounds on circuit design, novel materials and applications, and regulatory issues, forming a cross disciplinary team in order to achieve an efficient transmission of power over the air interface. This paper aims to present WPT technology in an integrated way, addressing state-of-the-art and challenges, and to discuss future R&D perspectives summarizing recent activities in Europe.The work of N. Borges Carvalho and A. J. S. Soares Boaventura was supported by the Portuguese Foundation for Science and Technology (FCT) under Project CREATION EXCL/EEI-TEL/0067/2012 and Doctoral Scholarship SFRH/BD/80615/2011. The work of H. Rogier was supported by BELSPO through the IAP Phase VII BESTCOM project and the Fund for Scientific Research-Flanders (FWO-V). The work of A. Georgiadis and A. Collado was supported by the European Union (EU) under Marie Curie FP7-PEOPLE-2009-IAPP 251557 and the Spanish Ministry of Economy and Competitiveness Project TEC 2012-39143. The work of J. A. García and M. N. Ruíz was supported by the Spanish Ministries MICINN and MINECO under FEDER co-funded Project TEC2011-29126-C03-01 and Project CSD2008-00068. The work of J. Kracek and M. Mazanek was supported in part by the Czech Ministry of Education Youth and Sports under Project OC09075–Novel Emerging Wireless Systems

    Self-Powered Electronics for Piezoelectric Energy Harvesting Devices

    Get PDF
    International audienc

    Energy harvesting from human and machine motion for wireless electronic devices

    No full text
    Published versio
    corecore