375 research outputs found

    KLEIN: A New Family of Lightweight Block Ciphers

    Get PDF
    Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has advantage in the software performance on legacy sensor platforms, while in the same time its hardware implementation can also be compact

    Lightweight Cryptography for Passive RFID Tags

    Get PDF

    NOVEL RESOURCE EFFICIENT CIRCUIT DESIGNS FOR REBOOTING COMPUTING

    Get PDF
    CMOS based computing is reaching its limits. To take computation beyond Moores law (the number of transistors and hence processing power on a chip doubles every 18 months to 3 years) requires research explorations in (i) new materials, devices, and processes, (ii) new architectures and algorithms, (iii) new paradigm of logic bit representation. The focus is on fundamental new ways to compute under the umbrella of rebooting computing such as spintronics, quantum computing, adiabatic and reversible computing. Therefore, this thesis highlights explicitly Quantum computing and Adiabatic logic, two new computing paradigms that come under the umbrella of rebooting computing. Quantum computing is investigated for its promising application in high-performance computing. The first contribution of this thesis is the design of two resource-efficient designs for quantum integer division. The first design is based on non-restoring division algorithm and the second one is based on restoring division algorithm. Both the designs are compared and shown to be superior to the existing work in terms of T-count and T-depth. The proliferation of IoT devices which work on low-power also has drawn interests to the rebooting computing. Hence, the second contribution of this thesis is proving that Adiabatic Logic is a promising candidate for implementation in IoT devices. The adiabatic logic family called Symmetric Pass Gate Adiabatic Logic (SPGAL) is implemented in PRESENT-80 lightweight algorithm. Adiabatic Logic is extended to emerging transistor devices

    The Simeck Family of Lightweight Block Ciphers

    Get PDF
    Two lightweight block cipher families, SIMON and SPECK, have been proposed by researchers from the NSA recently. In this paper, we introduce Simeck, a new family of lightweight block ciphers that combines the good design components from both SIMON and SPECK, in order to devise even more compact and efficient block ciphers. For Simeck32/64, we can achieve 505 GEs (before the Place and Route phase) and 549 GEs (after the Place and Route phase), with the power consumption of 0.417 μW\mu W in CMOS 130nm ASIC, and 454 GEs (before the Place and Route phase) and 488 GEs (after the Place and Route phase), with the power consumption of 1.292 μW\mu W in CMOS 65nm ASIC. Furthermore, all of the instances of Simeck are smaller than the ones of hardware-optimized cipher SIMON in terms of area and power consumption in both CMOS 130nm and CMOS 65nm techniques. In addition, we also give the security evaluation of Simeck with respect to many traditional cryptanalysis methods, including differential attacks, linear attacks, impossible differential attacks, meet-in-the-middle attacks, and slide attacks. Overall, all of the instances of Simeck can satisfy the area, power, and throughput requirements in passive RFID tags

    A Do-It-All-Cipher for RFID: Design Requirements (Extended Abstract)

    Get PDF
    Recent years have seen significant progress in the development of lightweight symmetric cryptoprimitives. The main concern of the designers of these primitives has been to minimize the number of gate equivalents (GEs) of the hardware implementation. However, there are numerous additional requirements that are present in real-life RFID systems. We give an overview of requirements emerging or already present in the widely deployed EPCGlobal Gen2 and ISO / IEC 18000-63 passive UHF RFID air interface standards. Lightweight stateful authenticated encryption algorithms seem to offer the most complete set of features for this purpose. In this work we give a Gen2-focused ”lessons learned” overview of the challenges and related developments in RFID cryptography and propose what we see as appropriate design criteria for a cipher (dubbed “Do-It-All-Cipher” or DIAC) for the Internet of Things. We also comment on the applicability of NSA’s new SIMON and SPECK proposals for this purpose

    Single-Rail Adiabatic Logic for Energy-Efficient and CPA-Resistant Cryptographic Circuit in Low-Frequency Medical Devices

    Get PDF
    Designing energy-efficient and secure cryptographic circuits in low-frequency medical devices are challenging due to low-energy requirements. Also, the conventional CMOS logic-based cryptographic circuits solutions in medical devices can be vulnerable to side-channel attacks (e.g. correlation power analysis (CPA)). In this article, we explored single-rail Clocked CMOS Adiabatic Logic (CCAL) to design an energy-efficient and secure cryptographic circuit for low-frequency medical devices. The performance of the CCAL logic-based circuits was checked with a power clock generator (2N2P-PCG) integrated into the design for the frequency range of 50 kHz to 250 kHz. The CCAL logic gates show an average of approximately 48% energy-saving and more than 95% improvement in security metrics performance compared to its CMOS logic gate counterparts. Further, the CCAL based circuits are also compared for energy-saving performance against dual-rail adiabatic logic, 2-EE-SPFAL, and 2-SPGAL. The adiabatic CCAL gates save on an average of 55% energy saving compared to 2-EE-SPFAL and 2-SPGAL over the frequency range of 50 kHz to 250 kHz. To check the efficacy of CCAL to design a larger cryptographic circuit, we implemented a case-study design of a Substitution-box (S-box) of popular lightweight PRESENT-80 encryption. The case-study implementation (2N2P-PCG integrated into the design) using CCAL shows more than 95% energy saving compared to CMOS for the frequency 50 kHz to 125 kHz and around 60% energy saving at frequency 250 kHz. At 250 kHz, compared to the dual-rail adiabatic designs of S-box based on 2-EE-SPFAL and 2-SPGAL, the CCAL based S-box shows 32.67% and 11.21% of energy savings, respectively. Additionally, the CCAL logic gate structure requires a lesser number of transistors compared to dual-rail adiabatic logic. The case-study implementation using CCAL saves 45.74% and 34.88% transistor counts compared to 2-EE-SPFAL and 2-SPGAL. The article also presents the effect of varying tank capacitance in 2N2P-PCG over energy efficiency and security performance. The CCAL based case-study was also subjected against CPA. The CCAL-based S-box case study successfully protects the revelation of the encryption key against the CPA attack, However, the key was revealed in CMOS-based case-study implementation

    Hardware design of cryptographic algorithms for low-cost RFID tags

    Get PDF
    Mención Internacional en el título de doctorRadio Frequency Identification (RFID) is a wireless technology for automatic identification that has experienced a notable growth in the last years. RFID is an important part of the new trend named Internet of Things (IoT), which describes a near future where all the objects are connected to the Internet and can interact between them. The massive deployment of RFID technology depends on device costs and dependability. In order to make these systems dependable, security needs to be added to RFID implementations, as RF communications can be accessed by an attacker who could extract or manipulate private information from the objects. On the other hand, reduced costs usually imply resource-constrained environments. Due to these resource limitations necessary to low-cost implementations, typical cryptographic primitives cannot be used to secure low-cost RFID systems. A new concept emerged due to this necessity, Lightweight Cryptography. This term was used for the first time in 2003 by Vajda et al. and research on this topic has been done widely in the last decade. Several proposals oriented to low-cost RFID systems have been reported in the literature. Many of these proposals do not tackle in a realistic way the multiple restrictions required by the technology or the specifications imposed by the different standards that have arose for these technologies. The objective of this thesis is to contribute in the field of lightweight cryptography oriented to low-cost RFID tags from the microelectronics point of view. First, a study about the implementation of lightweight cryptographic primitives is presented . Specifically, the area used in the implementation, which is one of the most important requirements of the technology as it is directly related to the cost. After this analysis, a footprint area estimator of lightweight algorithms has been developed. This estimator calculates an upper-bound of the area used in the implementation. This estimator will help in making some choices at the algorithmic level, even for designers without hardware design skills. Second, two pseudo-random number generators have been proposed. Pseudorandom number generators are essential cryptographic blocks in RFID systems. According to the most extended RFID standard, EPC Class-1 Gen-2, it is mandatory to include a generator in RFID tags. Several architectures for the two proposed generators have been presented in this thesis and they have been integrated in two authentication protocols, and the main metrics (area, throughput and power consumption) have been analysed. Finally, the topic of True Random Number Generators is studied. These generators are also very important in secure RFID, and are currently a trending research line. A novel generator, presented by Cherkaoui et al., has been evaluated under different attack scenarios. A new true random number generator based on coherent sampling and suitable for low-cost RFID systems has been proposed.La tecnología de Identificación por Radio Frecuencia, más conocida por sus siglas en inglés RFID, se ha convertido en una de las tecnologías de autoidentificación más importantes dentro de la nueva corriente de identificación conocida como Internet de las Cosas (IoT). Esta nueva tendencia describe un futuro donde todos los objetos están conectados a internet y son capaces de identificarse ante otros objetos. La implantación masiva de los sistemas RFID está hoy en día limitada por el coste de los dispositivos y la fiabilidad. Para que este tipo de sistemas sea fiable, es necesario añadir seguridad a las implementaciones RFID, ya que las comunicaciones por radio frecuencia pueden ser fácilmente atacadas y la información sobre objetos comprometida. Por otro lado, para que todos los objetos estén conectados es necesario que el coste de la tecnología de identificación sea muy reducido, lo que significa una gran limitación de recursos en diferentes ámbitos. Dada la limitación de recursos necesaria en implementaciones de bajo coste, las primitivas criptográficas típicas no pueden ser usadas para dotar de seguridad a un sistema RFID de bajo coste. El concepto de primitiva criptográfica ligera fue introducido por primera vez 2003 por Vajda et al. y ha sido desarrollado ampliamente en los últimos años, dando como resultados una serie de algoritmos criptográficos ligeros adecuados para su uso en tecnología RFID de bajo coste. El principal problema de muchos de los algoritmos presentados es que no abordan de forma realista las múltiples limitaciones de la tecnología. El objetivo de esta tesis es el de contribuir en el campo de la criptografía ligera orientada a etiquetas RFID de bajo coste desde el punto de vista de la microelectrónica. En primer lugar se presenta un estudio de la implementación de las primitivas criptográficas ligeras más utilizadas, concretamente analizando el área ocupado por dichas primitivas, ya que es uno de los parámetros críticos considerados a la hora de incluir dichas primitivas criptográficas en los dispositivos RFID de bajo coste. Tras el análisis de estas primitivas se ha desarrollado un estimador de área para algoritmos criptográficos ultraligeros que trata de dar una cota superior del área total ocupada por el algoritmo (incluyendo registros y lógica de control). Este estimador permite al diseñador, en etapas tempranas del diseño y sin tener ningún conocimiento sobre implementaciones, saber si el algoritmo está dentro de los límites de área mpuestos por la tecnología RFID. También se proponen 2 generadores de números pseudo-aleatorios. Estos generadores son uno de los bloques criptográficos más importantes en un sistema RFID. El estándar RFID más extendido entre la industria, EPC Class-1 Gen-2, establece el uso obligatorio de dicho tipo de generadores en las etiquetas RFID. Los generadores propuestos han sido implementados e integrados en 2 protocolos de comunicación orientados a RFID, obteniendo buenos resultados en las principales características del sistema. Por último, se ha estudiado el tema de los generadores de números aleatorios. Este tipo de generadores son frecuentemente usados en seguridad RFID. Actualmente esta línea de investigación es muy popular. En esta tesis, se ha evaluado la seguridad de un novedoso TRNG, presentado por Cherkaoui et al., frente ataques típicos considerados en la literatura. Además, se ha presentado un nuevo TRNG de bajo coste basado en la técnica de muestreo por pares.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Teresa Riesgo Alcaide.- Secretario: Emilio Olías Ruiz.- Vocal: Giorgio di Natal

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios
    corecore