22 research outputs found

    Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection: Current State and Future Directions

    Get PDF
    abstract: Introduction: Fluorescence-guided surgery is one of the rapidly emerging methods of surgical “theranostics.” In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients as well as future applications of recent laboratory and translational studies. Methods: Review of the literature. Results: A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence-guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-aminolevulinic acid, and indocyanine green), less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine, can be used for rapid tumor detection and pathological tissue examination. Other emerging agents, such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment, are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed. Conclusion: We are standing on the threshold of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.View the article as published at http://journal.frontiersin.org/article/10.3389/fsurg.2016.00055/ful

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    High-resolution fluorescence endomicroscopy for rapid evaluation of breast cancer margins

    Get PDF
    Breast cancer is a major public health problem world-wide and the second leading cause of cancer-related female deaths. Breast conserving surgery (BCS), in the form of wide local excision (WLE), allows complete tumour resection while maintaining acceptable cosmesis. It is the recommended treatment for a large number of patients with early stage disease or, in more advanced cases, following neoadjuvant chemotherapy. About 30% of patients undergoing BCS require one or more re-operative interventions, mainly due to the presence of positive margins. The standard of care for surgical margin assessment is post-operative examination of histopathological tissue sections. However, this process is invasive, introduces sampling errors and does not provide real-time assessment of the tumour status of radial margins. The objective of this thesis is to improve intra-operative assessment of margin status by performing optical biopsy in breast tissue. This thesis presents several technical and clinical developments related to confocal fluorescence endomicroscopy systems for real-time characterisation of different breast morphologies. The imaging systems discussed employ flexible fibre-bundle based imaging probes coupled to high-speed line-scan confocal microscope set-up. A preliminary study on 43 unfixed breast specimens describes the development and testing of line-scan confocal laser endomicroscope (LS-CLE) to image and classify different breast pathologies. LS-CLE is also demonstrated to assess the intra-operative tumour status of whole WLE specimens and surgical excisions with high diagnostic accuracy. A third study demonstrates the development and testing of a bespoke LS-CLE system with methylene blue (MB), an US Food and Drug Administration (FDA) approved fluorescent agent, and integration with robotic scanner to enable large-area in vivo imaging of breast cancer. The work also addresses three technical issues which limit existing fibre-bundle based fluorescence endomicroscopy systems: i) Restriction to use single fluorescence agent due to low-speed, single excitation and single fluorescence spectral band imaging systems; ii) Limited Field of view (FOV) of fibre-bundle endomicroscopes due to small size of the fibre tip and iii) Limited spatial resolution of fibre-bundle endomicroscopes due to the spacing between the individual fibres leading to fibre-pixelation effects. Details of design and development of a high-speed dual-wavelength LS-CLE system suitable for high-resolution multiplexed imaging are presented. Dual-wavelength imaging is achieved by sequentially switching between 488 nm and 660 nm laser sources for alternate frames, avoiding spectral bleed-through, and providing an effective frame rate of 60 Hz. A combination of hand-held or robotic scanning with real-time video mosaicking, is demonstrated to enable large-area imaging while still maintaining microscopic resolution. Finally, a miniaturised piezoelectric transducer-based fibre-shifting endomicroscope is developed to enhance the resolution over conventional fibre-bundle based imaging systems. The fibre-shifting endomicroscope provides a two-fold improvement in resolution and coupled to a high-speed LS-CLE scanning system, provides real-time imaging of biological samples at 30 fps. These investigations furthered the utility and applications of the fibre-bundle based fluorescence systems for rapid imaging and diagnosis of cancer margins.Open Acces

    Sporesat: a nanosatellite platform lab-on-a-chip system for investigating gravity threshold of fern-spore single-cell calcium ion currents

    Get PDF
    SporeSat – a lab-on-a-chip (LOC) centrifuge platform designed for integration as the payload of a small (5.5 kg), free-flying satellite – has been developed to determine the gravitational thresholds for calcium-ion channel activation of a single-cell spore from the fern Ceratopteris richardii. This fern is an important model system for gravity-directed plant-cell development during variable-gravity conditions attainable only in space flight. Calcium-ion channel activity is measured by photolithographically defined calcium ion–selective electrodes (ISEs) at opposite ends of each spore. Artificial gravity is created by rotating a disk-like platform that contains the spores in wells along with the calcium ISEs. Ground experiments reveal a maximum calcium concentration ratio at 2.2xg, between micro-ion-selective electrodes near the “top” and “bottom” ends of the spore, indicating an increasing calcium concentration at one “end” of the fern spore with respect to the other. Confocal micrographs of rhizoid formation confirm the light-induced germination. SporeSat is a spaceflight experiment that will take ~ 4 days; data will be telemetered to Earth over ~ 100 days

    Design of a high-speed-force-stroke thermomechanical micro-actuator via geometric contouring and mechanical frequency multiplication

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 187-192).The aims of this research were to understand (1) why marked performance improvements are observed when one contours the geometry of micro-thermomechanical actuators (pTMAs), (2) how to parametrically model and optimize these improvements, (3) how to use transient electrical command signals to augment these improvements, and (4) how to design arrayed pairs of actuator teams that enable the realization of these improvements within small-scale precision machines. This work has extended the performance envelope of small-scale electromechanical systems to cover the needs of emerging positioning applications that were previously impractical. The results are important to, for example, small-scale machines that are increasingly needed within biological imaging equipment, equipment for nanomanufacturing, and instruments for nano-scale research. These positioning systems must be of small geometric scale in order to achieve viable bandwidth (kHz), resolution (nanometers), cost ($10s/device) and stability (A/min) levels. Miniaturized machines require small-scale actuators, but unfortunately, state-of-the-art actuators are not capable of simultaneously satisfying the force (~10OmN), stroke (~100pLm) and bandwidth (-lkHz) requirements of the preceding applications. In the absence of a practical actuation technology, many small-scale devices were relegated to "demo" status, and they never realized the full promise that small-scale machines could deliver for the preceding applications. This work has generated two concepts - geometric contouring and mechanical frequency multiplication that make jtTMAs behave in a manner that is very different from how they have acted in the past: (1) Geometric contouring:(cont) The variation of a beam's cross-sectional area along its length to achieve more favorable thermal characteristics, i.e. temperature profile, while simultaneously reducing the elastic energy storage within the beam, and (2) Mechanical frequency multiplication: The use of pTMAs pairs that cooperate to reduce their combined cycle time below their individual cycle times, thereby increasing their operating frequency. The utility and practical implementation of these techniques were illustrated via a case study on a threeaxis optical scanner for a two-photon endomicroscope. The device consisted of three sub-systems: (i) an optical system (prism, graded index lens, and optical fiber) that was used to deliver/collect photons during imaging, (ii) a small-scale electromechanical scanner that could raster scan the focal point of the optics through a specimen and (iii) a silicon optical bench that connects the electromechanical and optical systems. The scanner was required to fit within a 7mm 0 endoscope port and scan at 1kHz throughout a 100xl00xl00 IPn3 volume. The results of this thesis were used to engineer a scanner that was capable of 3.5kHz x 100Hz x 30Hz scanning throughout a 125 x 200 x 200 jtm3 volume. Preceding jtTMA technology could only scan over 12.5% of the required volume at 10% of the required frequency. This work forms a body of knowledge - design rules, principles and best practices - that may be used to realize similar benefits in other small-scale devices.by Shih-Chi Chen.Ph.D

    High-accuracy Motion Estimation for MEMS Devices with Capacitive Sensors

    Full text link
    With the development of micro-electro-mechanical system (MEMS) technologies, emerging MEMS applications such as in-situ MEMS IMU calibration, medical imaging via endomicroscopy, and feedback control for nano-positioning and laser scanning impose needs for especially accurate measurements of motion using on-chip sensors. Due to their advantages of simple fabrication and integration within system level architectures, capacitive sensors are a primary choice for motion tracking in those applications. However, challenges arise as often the capacitive sensing scheme in those applications is unconventional due to the nature of the application and/or the design and fabrication restrictions imposed, and MEMS sensors are traditionally susceptible to accuracy errors, as from nonlinear sensor behavior, gain and bias drift, feedthrough disturbances, etc. Those challenges prevent traditional sensing and estimation techniques from fulfilling the accuracy requirements of the candidate applications. The goal of this dissertation is to provide a framework for such MEMS devices to achieve high-accuracy motion estimation, and specifically to focus on innovative sensing and estimation techniques that leverage unconventional capacitive sensing schemes to improve estimation accuracy. Several research studies with this specific aim have been conducted, and the methodologies, results and findings are presented in the context of three applications. The general procedure of the study includes proposing and devising the capacitive sensing scheme, deriving a sensor model based on first principles of capacitor configuration and sensing circuit, analyzing the sensor’s characteristics in simulation with tuning of key parameters, conducting experimental investigations by constructing testbeds and identifying actuation and sensing models, formulating estimation schemes is to include identified actuation dynamics and sensor models, and validating the estimation schemes and evaluating their performance against ground truth measurements. The studies show that the proposed techniques are valid and effective, as the estimation schemes adopted either fulfill the requirements imposed or improve the overall estimation performance. Highlighted results presented in this dissertation include a scale factor calibration accuracy of 286 ppm for a MEMS gyroscope (Chapter 3), an improvement of 15.1% of angular displacement estimation accuracy by adopting a threshold sensing technique for a scanning micro-mirror (Chapter 4), and a phase shift prediction error of 0.39 degree for a electrostatic micro-scanner using shared electrodes for actuation and sensing (Chapter 5).PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147568/1/davidsky_1.pd

    An Investigation of the Diagnostic Potential of Autofluorescence Lifetime Spectroscopy and Imaging for Label-Free Contrast of Disease

    Get PDF
    The work presented in this thesis aimed to study the application of fluorescence lifetime spectroscopy (FLS) and fluorescence lifetime imaging microscopy (FLIM) to investigate their potential for diagnostic contrast of diseased tissue with a particular emphasis on autofluorescence (AF) measurements of gastrointestinal (GI) disease. Initially, an ex vivo study utilising confocal FLIM was undertaken with 420 nm excitation to characterise the fluorescence lifetime (FL) images obtained from 71 GI samples from 35 patients. A significant decrease in FL was observed between normal colon and polyps (p = 0.024), and normal colon and inflammatory bowel disease (IBD) (p = 0.015). Confocal FLIM was also performed on 23 bladder samples. A longer, although not significant, FL for cancer was observed, in paired specimens (n = 5) instilled with a photosensitizer. The first in vivo study was a clinical investigation of skin cancer using a fibre-optic FL spectrofluorometer and involved the interrogation of 27 lesions from 25 patients. A significant decrease in the FL of basal cell carcinomas compared to healthy tissue was observed (p = 0.002) with 445 nm excitation. A novel clinically viable FLS fibre-optic probe was then applied ex vivo to measure 60 samples collected from 23 patients. In a paired analysis of neoplastic polyps and normal colon obtained from the same region of the colon in the same patient (n = 12), a significant decrease in FL was observed (p = 0.021) with 435 nm excitation. In contrast, with 375 nm excitation, the mean FL of IBD specimens (n = 4) was found to be longer than that of normal tissue, although not statistically significant. Finally, the FLS system was applied in vivo in 17 patients, with initial data indicating that 435 nm excitation results in AF lifetimes that are broadly consistent with ex vivo studies, although no diagnostically significant differences were observed in the signals obtained in vivo.Open Acces

    Computational Optical Sectioning in Fibre Bundle Endomicroscopy

    Get PDF
    The field of fibre bundle endomicroscopy has emerged to enable real-time imaging of cellular level features in-vivo. The gold standard is confocal laserscanning, enabling optical sectioning. Point-scan confocal suffers from lower speeds, a need for complex alignment, and the added cost of a laser. This thesis presents three developments in computational optical sectioning for fibre bundle endomicroscopy.The first development is in structured illumination (SIM) endomicroscopy. Lower-cost, simplified endomicroscopes have been developed which use widefield incoherent illumination. Optical sectioning can be introduced to these systems using SIM. SIM improves imaging using spatial modulation of the focal plane and capturing a three-frame sequence. The acquired images are then numerically processed to reject out-of-focus light. This thesis reports and characterises the first high-speed SIM endomicroscope built using a miniature array ofmirrors, a digital micromirror device. The second development is automated motion compensation in SIM endomicroscopy. As a multi frame process, SIM is susceptible to motion artefacts, making the technique difficult to use in vivo and preventing the use of mosaicking to synthesise a larger effective field of view. I report and validate an automatic motion compensation technique to overcome motion artefacts and report the firstmosaics in SIM endomicroscopy.The third development is improvements in subtraction-based enhanced line scanning (ELS) endomicroscopy. The 2D scanning of a point scan confocal endomicroscope can be replaced by a scanning line which is synchronised to the sequential readout of a rolling shutter camera. While this leads to high-speed sectioning, as with all line scanning systems, far-from-focus light degrades images. It is possible to remove this by subtracting a second image taken with an offset detection slit. This has previously required two-cameras or two sequentialframes. The latter introduces motion artefacts. This thesis presents a novel approach to ELS using single frame acquisition with real-time mosaicking at 240frames/s

    Thin-Film PZT Scanning Micro-actuators for Vertical Cross-sectional Imaging in Endomicroscopy

    Full text link
    The advancement of optics and the development of microelectromechanical systems (MEMS) based scanners has enabled powerful optical imaging techniques that can perform optical sectioning with high resolution and contrast, large field of view, and long working distance to be realized in endoscope-compatible form factors. Optical endomicroscopes based on these imaging techniques can be used to obtain in vivo vertical cross-sectional images of dysplastic tissues in the hollow organs before they progress to mucosal diseases such as colorectal cancer. However, existing endomicroscopic systems that use imaging modalities compatible with the use of fluorescent biomarkers are not capable of deep vertical sectioning in real time. This work proposes a unique MEMS-based scanning mechanism to be incorporated into endoscopic microscopes for real-time in vivo deep into-tissue scanning for early cancer detection. For this task, a class of novel multi-axis micro-scanners based on thin-film lead-zirconate-titanate (PZT) has been developed. Leveraging the large piezoelectric strain coefficient of PZT, the prototypes have demonstrated more than 400 ÎĽm of out-of-plane displacement with bandwidths on the order of 100-200 Hz in only a 3.2 mm-by-3.2 mm footprint, which meets the requirements for this application. The scanners have a central rectangular-shaped reflector, whose corners are supported by four symmetric PZT bending legs that generate vertical translation. This design gives the reflector a three-axis motion. The challenges to fabricate high performance piezoelectric actuators are discussed with device failure mechanisms observed during the fabrication of the 1st generation scanners. Improved fabrication steps are presented that solve the issues with the 1st generation devices and enhance the robustness of the scanners for instrument integration. Remaining non-ideal fabrication outcomes cause MEMS devices to produce unwanted motions, which can degrade imaging quality. To overcome this problem, a method to drive MEMS actuators having multiple vibration modes with close frequencies to produce a desired motion pattern with a single input is presented, and was used to generate a pure vertical motion for imaging. Two-photon based vertical cross-sectional images of mouse colon was obtained in real time for the first time using a thin-film piezoelectric microscanner. To understand the effects of fabrication non-idealities on the device behavior and produce more robust scanner performance, analytical models that describes large vertical and rotational motions including multi-axis coupling were developed. A static model that was initially developed for design optimization was calibrated, along with a transient model, using experimental data to incorporate the effects of dimensional variations and residual stress. This models can be used with future integrated sensors and feedback controllers for more precise and robust motion of the scanner. This calibration technique can be useful in developing analytic models for MEMS devices subject to fabrication uncertainty. In addition, nonlinear dynamic behavior due to large vertical stroke in the presence of fabrication non-idealities is captured by linearizing an expanded dynamic model about different static positions obtained by numerically solving the expanded nonlinear model.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137124/1/jongs_1.pd
    corecore