3,025 research outputs found

    Guest editorial for the special issue on software-defined radio transceivers and circuits for 5G wireless communications

    Get PDF
    Yichuang Sun, Baoyong Chi, and Heng Zhang, Guest Editorial for the Special Issue on Software-Defined Radio Transceivers and Circuits for 5G Wireless Communications, published in IEEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 63 (1): 1-3, January 2016, doi: https://doi.org/10.1109/TCSII.2015.2506979.Peer reviewedFinal Accepted Versio

    Design of a tunable multi-band differential LC VCO using 0.35 mu m SiGe BiCMOS technology for multi-standard wireless communication systems

    Get PDF
    In this paper, an integrated 2.2-5.7GHz multi-band differential LC VCO for multi-standard wireless communication systems was designed utilizing 0.35 mu m SiGe BiCMOS technology. The topology, which combines the switching inductors and capacitors together in the same circuit, is a novel approach for wideband VCOs. Based on the post-layout simulation results, the VCO can be tuned using a DC voltage of 0 to 3.3 V for 5 different frequency bands (2.27-2.51 GHz, 2.48-2.78 GHz, 3.22-3.53 GHz, 3.48-3.91 GHz and 4.528-5.7 GHz) with a maximum bandwidth of 1.36 GHz and a minimum bandwidth of 300 MHz. The designed and simulated VCO can generate a differential output power between 0.992 and -6.087 dBm with an average power consumption of 44.21 mW including the buffers. The average second and third harmonics level were obtained as -37.21 and -47.6 dBm, respectively. The phase noise between -110.45 and -122.5 dBc/Hz, that was simulated at 1 MHz offset, can be obtained through the frequency of interest. Additionally, the figure of merit (FOM), that includes all important parameters such as the phase noise, the power consumption and the ratio of the operating frequency to the offset frequency, is between -176.48 and -181.16 and comparable or better than the ones with the other current VCOs. The main advantage of this study in comparison with the other VCOs, is covering 5 frequency bands starting from 2.27 up to 5.76 GHz without FOM and area abandonment. Output power of the fundamental frequency changes between -6.087 and 0.992 dBm, depending on the bias conditions (operating bands). Based on the post-layout simulation results, the core VCO circuit draws a current between 2.4-6.3 mA and between 11.4 and 15.3 mA with the buffer circuit from 3.3 V supply. The circuit occupies an area of 1.477 mm(2) on Si substrate, including DC, digital and RF pads

    An effective AMS Top-Down Methodology Applied to the Design of a Mixed-SignalUWB System-on-Chip

    Get PDF
    The design of Ultra Wideband (UWB) mixed-signal SoC for localization applications in wireless personal area networks is currently investigated by several researchers. The complexity of the design claims for effective top-down methodologies. We propose a layered approach based on VHDL-AMS for the first design stages and on an intelligent use of a circuit-level simulator for the transistor-level phase. We apply the latter just to one block at a time and wrap it within the system-level VHDL-AMS description. This method allows to capture the impact of circuit-level design choices and non-idealities on system performance. To demonstrate the effectiveness of the methodology we show how the refinement of the design affects specific UWB system parameters such as bit-error rate and localization estimations
    • …
    corecore