1,356 research outputs found

    Design of a tunable multi-band differential LC VCO using 0.35 mu m SiGe BiCMOS technology for multi-standard wireless communication systems

    Get PDF
    In this paper, an integrated 2.2-5.7GHz multi-band differential LC VCO for multi-standard wireless communication systems was designed utilizing 0.35 mu m SiGe BiCMOS technology. The topology, which combines the switching inductors and capacitors together in the same circuit, is a novel approach for wideband VCOs. Based on the post-layout simulation results, the VCO can be tuned using a DC voltage of 0 to 3.3 V for 5 different frequency bands (2.27-2.51 GHz, 2.48-2.78 GHz, 3.22-3.53 GHz, 3.48-3.91 GHz and 4.528-5.7 GHz) with a maximum bandwidth of 1.36 GHz and a minimum bandwidth of 300 MHz. The designed and simulated VCO can generate a differential output power between 0.992 and -6.087 dBm with an average power consumption of 44.21 mW including the buffers. The average second and third harmonics level were obtained as -37.21 and -47.6 dBm, respectively. The phase noise between -110.45 and -122.5 dBc/Hz, that was simulated at 1 MHz offset, can be obtained through the frequency of interest. Additionally, the figure of merit (FOM), that includes all important parameters such as the phase noise, the power consumption and the ratio of the operating frequency to the offset frequency, is between -176.48 and -181.16 and comparable or better than the ones with the other current VCOs. The main advantage of this study in comparison with the other VCOs, is covering 5 frequency bands starting from 2.27 up to 5.76 GHz without FOM and area abandonment. Output power of the fundamental frequency changes between -6.087 and 0.992 dBm, depending on the bias conditions (operating bands). Based on the post-layout simulation results, the core VCO circuit draws a current between 2.4-6.3 mA and between 11.4 and 15.3 mA with the buffer circuit from 3.3 V supply. The circuit occupies an area of 1.477 mm(2) on Si substrate, including DC, digital and RF pads

    Design of a 4.2-5.4 GHz differential LC VCO using 0.35 mu m SiGeBiCMOS technology for IEEE 802.11a applications

    Get PDF
    In this paper, a 4.2-5.4 GHz, -Gm LC voltage controlled oscillator (VCO) for IEEE 802.11a standard is presented. The circuit is designed with AMS 0.35 mu m SiGe BiCMOS process that includes high-speed SiGe Heterojunction Bipolar Transistors (HBTs). According to post-layout simulation results, phase noise is -110.7 dBc/Hz at 1 MHz offset from 5.4 GHz carrier frequency and -113.4 dBc/Hz from 4.2 GHz carrier frequency. A linear, 1200 MHz tuning range is obtained from the simulations, utilizing accumulation-mode varactors. Phase noise was also found to be relatively low because of taking advantage of differential tuning concept. Output power of the fundamental frequency changes between 4.8 dBm and 5.5 dBm depending on the tuning voltage. Based on the simulation results, the circuit draws 2 mA without buffers and 14.5 mA from 2.5 V supply including buffer circuits leading to a total power dissipation of 36.25 mW. The circuit layout occupies an area of 0.6 mm(2) on Si substrate, including DC and RF pads

    Linearity of Bulk-Controlled Inverter Ring VCO in Weak and Strong Inversion

    Get PDF

    Receiver Front-Ends in CMOS with Ultra-Low Power Consumption

    Get PDF
    Historically, research on radio communication has focused on improving range and data rate. In the last decade, however, there has been an increasing demand for low power and low cost radios that can provide connectivity with small devices around us. They should be able to offer basic connectivity with a power consumption low enough to function extended periods of time on a single battery charge, or even energy scavenged from the surroundings. This work is focused on the design of ultra-low power receiver front-ends intended for a receiver operating in the 2.4GHz ISM band, having an active power consumption of 1mW and chip area of 1mm². Low power consumption and small size make it hard to achieve good sensitivity and tolerance to interference. This thesis starts with an introduction to the overall receiver specifications, low power radio and radio standards, front-end and LO generation architectures and building blocks, followed by the four included papers. Paper I demonstrates an inductorless front-end operating at 915MHz, including a frequency divider for quadrature LO generation. An LO generator operating at 2.4GHz is shown in Paper II, enabling a front-end operating above 2GHz. Papers III and IV contain circuits with combined front-end and LO generator operating at or above the full 2.45GHz target frequency. They use VCO and frequency divider topologies that offer efficient operation and low quadrature error. An efficient passive-mixer design with improved suppression of interference, enables an LNA-less design in Paper IV capable of operating without a SAW-filter

    Transformer based front-end for a low power 2.4 GHz transceiver

    Get PDF
    A low power transceiver architecture for the 2.4 GHz ISM band using a 1.0 V supply is presented. It employs a transformer to convert the 100 Ω antenna impedance to almost 1 kΩ and so facilitates a low power transmitter and receiver. The simulated post-layout output power of the differential class-E power amplifier is 2.0 dBm with a drain efficiency of 28.4%. The direct-conversion receiver achieves a very low power consumption of 420 μW and a noise figure of 15.0 dB.Ministerio de Ciencia e Innovación TEC2009-08447Junta de Andalucía TIC-0281

    Study on wideband voltage controlled oscillator and high efficiency power amplifier ICs for wireless communications

    Get PDF
    制度:新 ; 報告番号:甲3604号 ; 学位の種類:博士(工学) ; 授与年月日:2012/2/20 ; 早大学位記番号:新595

    A Sub-1-V, 350-uW, 6.5-dB Integrated NF Low-IF Receiver Front-End for IoT in 28-nm CMOS

    Get PDF
    This letter presents a highly efficient low-intermediate frequency receiver front-end for Internet-of-Things applications. The lownoise trans-impedance amplifier (LNTA) combines a transformer-based network for scaling up the source impedance together with passive gmboosting and current-reuse techniques to achieve better noise and 12× current saving compared with a common-gate (CG) stage. A complex channel-selection filter with center frequency and passband of 2 and 1.4 MHz, respectively, is implemented after the passive mixer with a gmboosted CG stage. Built in 28-nm CMOS, the proposed receiver occupies an active area of 0.1 mm 2 , it is supplied with 0.9 V and consumes only 350 μW, while showing a minimum NF of 6.2 dB at the channel of interest. The RF performance of the proposed receiver is very competitive with the state-of-the-art ultralow-power receivers, while it consumes the lowest power

    A 0.2 V 0.44 µW 20 kHz Analog to Digital Σ∆ Modulator with 57 fJ/conversion FoM

    Get PDF
    This paper presents a 90 nm CMOS A/D modulator operating with a supply voltage of 0.2 V, well below the threshold voltage of the transistors. The modulator is an open-loop first-order architecture based on a frequency-modulated intermediate signal, generated in a ring voltage-controlled oscillator. The linearity of the modulator is greatly improved by the adoption of a so-called soft-rail in the oscillator. Measurements show a dynamic range of 52 dB over a 20 kHz signal bandwidth with a sampling frequency of 3.4 MHz, for a total power consumption as low as 0.44 muW. The corresponding peak SNDR is 44.2 dB, while the peak SNR is 47.4 d

    Low-power CMOS front-ends for wireless personal area networks

    Get PDF
    The potential of implementing subthreshold radio frequency circuits in deep sub-micron CMOS technology was investigated for developing low-power front-ends for wireless personal area network (WPAN) applications. It was found that the higher transconductance to bias current ratio in weak inversion could be exploited in developing low-power wireless front-ends, if circuit techniques are employed to mitigate the higher device noise in subthreshold region. The first fully integrated subthreshold low noise amplifier was demonstrated in the GHz frequency range requiring only 260 μW of power consumption. Novel subthreshold variable gain stages and down-conversion mixers were developed. A 2.4 GHz receiver, consuming 540 μW of power, was implemented using a new subthreshold mixer by replacing the conventional active low noise amplifier by a series-resonant passive network that provides both input matching and voltage amplification. The first fully monolithic subthreshold CMOS receiver was also implemented with integrated subthreshold quadrature LO (Local Oscillator) chain for 2.4 GHz WPAN applications. Subthreshold operation, passive voltage amplification, and various low-power circuit techniques such as current reuse, stacking, and differential cross coupling were combined to lower the total power consumption to 2.6 mW. Extremely compact resistive feedback CMOS low noise amplifiers were presented as a cost-effective alternative to narrow band LNAs using high-Q inductors. Techniques to improve linearity and reduce power consumption were presented. The combination of high linearity, low noise figure, high broadband gain, extremely small die area and low power consumption made the proposed LNA architecture a compelling choice for many wireless applications.Ph.D.Committee Chair: Laskar, Joy; Committee Member: Chakraborty, Sudipto; Committee Member: Chang, Jae Joon; Committee Member: Divan, Deepakraj; Committee Member: Kornegay, Kevin; Committee Member: Tentzeris, Emmanoui
    corecore